【题目】已知函数,的最小正期为.
(1)求的单调增区间;
(2)方程在上有且只有一个解,求实数的取值范围;
(3)是否存在实数满足对任意,都存在,使得成立.若存在,求的取值范围;若不存在,说明理由.
【答案】(1);(2)或;(3)存在,.
【解析】
(1)利用降幂公式和辅助角公式化简得,再利用周期公式求得的值,从而得到的解析式,再利用整体代入求单调区间;
(2)方程;在上有且有一个解,转化为函数与函数只有一个交点;
(3)由(1)可知,则;实数满足对任意,都存在,使得成立,即成立,再将问题转化为恒成立问题.
(1)函数
∵的最小正周期为.∴,∴.
那么的解析式
令得:
∴的单调增区间为.
(2)方程;在上有且有一个解,
转化为函数与函数只有一个交点.
∵,∴
因为函数在上增,在上减,
且,
∴或,所以或.
(3)由(1)可知,∴.
实数满足对任意,都存在,
使得成立.
即成立
令
设,那么
∵,∴,
可得在上恒成立.
令,其对称轴,
∵上,
∴①当时,即,,解得;
②当,即时,,解得;
③当,即时,,解得;
综上可得,存在,可知的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知 ,若,且的图象相邻的对称轴间的距离不小于.
(1)求的取值范围.
(2)若当取最大值时, ,且在中, 分别是角的对边,其面积,求周长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知函数 .
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在 上为单调增函数,求a的取值范围;
(3)设m,n为正实数,且m>n,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,错误的是( )
A.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交
B.平行于同一个平面的两个不同平面平行
C.若直线l与平面平行,则过平面内一点且与直线l平行的直线在平面内
D.若直线l不平行于平面,则在平面内不存在与l平行的直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:
健身族 | 非健身族 | 合计 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合计 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?
(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?
参考公式: ,其中.
参考数据:
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本(单位:元/)与上市时间(单位:天)的数据如下表:
由表知,体现与数据关系的最佳函数模型是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com