分析 (1)由已知数列递推式求出数列首项,进一步可得当n≥2时,Sn-1=3an-1-2,与原递推式联立可得数列{an}为公比是$\frac{2}{3}$等比数列,并求得通项公式;
(2)把(1)中求得的数列通项公式代入bn=(n+1)•an,利用裂项相消法即可求得数列{bn}的前n项和Tn.
解答 (1)证明:由Sn=3an-2,①
得a1=3a1-2,∴a1=1.
当n≥2时,Sn-1=3an-1-2,②
①-②得:an=3an-3an-1,即2an=3an-1,
∴$\frac{{a}_{n}}{{a}_{n-1}}=\frac{2}{3}$(n≥2).
∴数列{an}为公比是$\frac{2}{3}$等比数列.
则${a}_{n}=1×(\frac{2}{3})^{n-1}=(\frac{2}{3})^{n-1}$;
(2)解:bn=(n+1)•an=(n+1)•$(\frac{2}{3})^{n-1}$,
∴${T}_{n}=2×(\frac{2}{3})^{0}+3×(\frac{2}{3})^{1}+4×(\frac{2}{3})^{2}+…+$$n(\frac{2}{3})^{n-2}+(n+1)(\frac{2}{3})^{n-1}$,③
∴$\frac{2}{3}{T}_{n}=2×(\frac{2}{3})^{1}+3×(\frac{2}{3})^{2}+…+n(\frac{2}{3})^{n-1}+(n+1)(\frac{2}{3})^{n}$,④
③-④得:$\frac{1}{3}{T}_{n}=2+\frac{2}{3}+(\frac{2}{3})^{2}+…+(\frac{2}{3})^{n-1}-(n+1)(\frac{2}{3})^{n}$=$2+\frac{\frac{2}{3}[1-(\frac{2}{3})^{n-1}]}{1-\frac{2}{3}}-(n+1)(\frac{2}{3})^{n}$
=$2+2[1-(\frac{2}{3})^{n-1}]-(n+1)(\frac{2}{3})^{n}$.
∴${T}_{n}=12-(n+8)•(\frac{2}{3})^{n-1}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了错位相减法求数列的前n项和,是中档题.
科目:高中数学 来源: 题型:解答题
分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
甲班频数 | 5 | 6 | 4 | 4 | 1 |
乙班频数 | 1 | 3 | 6 | 5 |
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | $\sqrt{5}$-1 | D. | $\sqrt{5}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学生 | A1 | A2 | A3 | A4 | A5 |
数学x(分) | 89 | 91 | 93 | 95 | 97 |
物理y(分) | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{16}{65}$ | B. | $\frac{16}{65}$ | C. | -$\frac{56}{65}$ | D. | $\frac{56}{65}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.544 | B. | 0.68 | C. | 0.8 | D. | 0.85 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-5,5] | B. | [-1,9] | C. | $[-\frac{1}{2},2]$ | D. | $[\frac{1}{2},3]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com