精英家教网 > 高中数学 > 题目详情

【题目】已知.

(1)若是奇函数,求的值,并判断的单调性(不用证明);

(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.

【答案】(1)答案见解析;(2).

【解析】试题分析:

(1)函数为奇函数,则,据此可得,且函数上单调递增;

(2)原问题等价于在区间(0,1)上有两个不同的根,换元令,结合二次函数的性质可得的取值范围是.

试题解析:

(1)因为是奇函数,

所以

所以

上是单调递增函数;

(2)在区间(0,1)上有两个不同的零点,

等价于方程在区间(0,1)上有两个不同的根,

即方程在区间(0,1)上有两个不同的根,

所以方程在区间上有两个不同的根,

画出函数(1,2)上的图象,如下图,

由图知,当直线y=a与函数的图象有2个交点时,

所以的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x+1|﹣|x|﹣2 (Ⅰ)解不等式f(x)≥0
(Ⅱ)若存在实数x,使得f(x)≤|x|+a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的一个顶点为A(2,3),两条高所在直线方程为x-2y+3=0和xy-4=0,求△ABC三边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法: ①分类变量A与B的随机变量K2越大,说明“A与B有关系”的可信度越大.
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=1, =1, =3,
则a=1.正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,已知

1)求证:

2)设上一点,试确定的位置,使平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

男性

女性

合计

反感

10

不反感

8

合计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
提示:可参考试卷第一页的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有成立.

(Ⅰ)判断上的单调性,并证明;

(Ⅱ)解不等式

(Ⅲ)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量

的单调递减区间;

)若,求 的值;

)将函数的图象向右平移个单位得到的图象,若函数上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥 的底面为直角梯形, 底面 的中点.

(Ⅰ)求证:平面 平面
(Ⅱ)求直线 与平面 所成的角的正弦值.

查看答案和解析>>

同步练习册答案