精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ),),且在点处的切线方程为.

(Ⅰ)求 的值;

(Ⅱ)若函数在区间内有且仅有一个极值点,求的取值范围;

(Ⅲ)设)为两曲线),的交点,且两曲线在交点处的切线分别为 .若取,试判断当直线 轴围成等腰三角形时值的个数并说明理由.

【答案】(1) .(2).(3) 能与轴围成等腰三角形时, 值的个数有2个.

【解析】试题分析:

(1)利用导函数与切线的关系可得 .

(2)构造函数;结合导函数的性质分类讨论可得的取值范围是.

(3) 设两切线 的倾斜角分别为 ,分类讨论可得 能与轴围成等腰三角形时, 值的个数有2个.

试题解析:

解:(Ⅰ) ,又 .

(Ⅱ)

.

,当且仅当时,函数在区间内有且仅有一个极值点.

,即,当;当,函数有极大值点

,即,当;当,函数有极大值点

综上, 的取值范围是.

(Ⅲ)当时,设两切线 的倾斜角分别为

均为锐角,

,即时,若直线 能与轴围成等腰三角形,则

,即时,若直线 能与轴围成等腰三角形,则.

得, ,得

,此方程有唯一解 能与轴围成一个等腰三角形.

得, ,得,即

时, 单调递增,则单调递增,

由于,且,所以,则

即方程有唯一解,直线 能与轴围成一个等腰三角形.

因此,当时,有两处符合题意,所以 能与轴围成等腰三角形时, 值的个数有2个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,已知对任意n∈N* , a1+a2+a3+…+an=3n﹣1,则a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:函数f(x)=lg(ax2﹣x+ a)的定义域为R;q:a≥1.如果命题“p∨q为真,p∧q为假”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是矩形,平面 平面,且是边长为的等边三角形, ,点的中点.

(1)求证: 平面

(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某早餐店每天制作甲、乙两种口味的糕点共n(nN*)份,每份糕点的成本1元,售价2元,如果当天卖不完,剩下的糕点作废品处理.该早餐店发现这两种糕点每天都有剩余,为此整理了过往100天这两种糕点的日销量(单位:份),得到如下的统计数据:

甲口味糕点日销量

48

49

50

51

天数

20

40

20

20

乙口味糕点日销量

48

49

50

51

天数

40

30

20

10

以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.

(1)记该店这两种糕点每日的总销量为X份,求X的分布列

(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数

①若产生浪费的概率不超过0.6,求n的最大值;

②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x-3)ex+ax,aR

(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;

(2)当a[0,e)时,设函数f(x)在(1,+)上的最小值为g(a),求函数g(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(sin x,cos x), =(sin x, sin x),x∈R,函数f(x)= ,求:
(1)f(x)的最小正周期;
(2)f(x)在区间[0,1]上的最大值和最小值,以及取得最大值和最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国式过马路”是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关.”出现这种现象是大家受法不责众的“从众”心理影响,从而不顾及交通安全.某校对全校学生过马路方式进行调查,在所有参与调查的人中,“跟从别人闯红灯”“从不闯红灯”“带头闯红灯”人数如表所示:

跟从别人闯红灯

从不闯红灯

带头闯红灯

男生

800

450

200

女生

100

150

300


(1)在所有参与调查的人中,用分层抽样的方法抽取n人,已知“跟从别人闯红灯”的人中抽取45人,求n的值;
(2)在“带头闯红灯”的人中,将男生的200人编号为1,2,…,200;将女生的300人编号为201,202,…,500,用系统抽样的方法抽取4人参加“文明交通”宣传活动,若抽取的第一个人的编号为100,把抽取的4人看成一个总体,从这4人中任选取2人,求这两人均是女生的概率.

查看答案和解析>>

同步练习册答案