精英家教网 > 高中数学 > 题目详情
设函数f(x)=-cos2x-4t•sin
x
2
cos
x
2
+2t2-6t+2
(x∈R),其中t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)当-1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围
分析:(1)首先对函数f(x)进行化简整理,进而看当t<-1,-1≤t≤1和t>1时时函数f(x)的最小值,进而确定g(t)的解析式.
(2)根据(1)可知当-1≤t≤1时函数g(t)的解析式,整理g(t)=kt得t2-(k+6)t+1=0问题转化为在区间[-1,1]有且仅有一个实根,先根据判别式等于0求得k的值,令q(t)=t2-(k+6)t+1,进而确定函数与x轴的轴有一个交点落在区间[-1,1]分别求得k的范围,最后综合可得答案.
解答:解:(1)由已知有:f(x)=-cos2x-4t•sin
x
2
cos
x
2
+t2-6t+2
=sin2x-2t•sinx+2t2-6t+1=(sinx-t)2+t2-6t+1,
由于x∈R,∴-1≤sinx≤1,
∴当t<-1时,则当sinx=-1时,f(x)min=2t2-4t+2;
当-1≤t≤1时,则当sinx=t时,f(x)min=t2-6t+1;
当t>1时,则当sinx=1时,f(x)min=2t2-8t+2;
综上,g(t)=
2t2-4t+2,t∈(-∞,-1)
t2-6t+1,t∈[-1,1]
2t2-8t+2,t∈(1,+∞)

(2)当-1≤t≤1时,g(t)=t2-6t+1,方程g(t)=kt即t2-6t+1=kt,
即方程t2-(k+6)t+1=0在区间[-1,1]有且仅有一个实根,
令q(t)=t2-(k+6)t+1,则有:
①若△=(k+6)2-4=0,即k=-4或k=-8.
当k=-4时,方程有重根t=1;当k=-8时,c方程有重根t=-1,∴k=-4或k=-8.
k+6
2
<-1
q(-1)<0
q(1)>0
?
k<-8
k<-8
k<-4
?k<-8或
k+6
2
>1
q(-1)>0
q(1)<0
?
k>-4
k>-8
k>-4
?k>-4,
综上,当k∈(-∞,-8]∪[-4,+∞)时,关于t的方程g(t)=kt在区间[-1,1]有且仅有一个实根.
点评:本题主要考查了函数与方程得综合运用.解题的关键是利用转化和化归思想,数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x2-4x+6,x≥0
x+6,x<0
则不等式f(x)>f(1)的解集是(  )
A、(-3,1)∪(3,+∞)
B、(-3,1)∪(2,+∞)
C、(-1,1)∪(3,+∞)
D、(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,(x<0)
-x+3,(x≥0)
,若f(-4)=f(0),f(-2)=-1,
(1)求函数f(x)的解析式;
(2)若f(x)=-1,求相应x的值;
(3)画出函数f(x)的图象,并说出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ax2+1bx+c
是奇函数(a,b,c都是整数),且f(1)=2,f(2)<3.求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)在一次人才招聘会上,有A、B、C三种不同的技工面向社会招聘.已知某技术人员应聘A、B、C三种技工被录用的概率分别是0.8、0.5、0.2 (允许受聘人员同时被多种技工录用).
(I)求该技术人员被录用的概率;
(Ⅱ)设X表示该技术人员被录用的工种数与未被录用的工种数的积.
i) 求X的分布列和数学期望;
ii)“设函数f(x)=3sin
(x+X)4
π,x∈R
是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)设函数f(x)=
x2+bx+c,(x≥0)
2,(x<0)
,若f(4)=f(0),f(2)=-2.则函数F(x)=f(|x|)-|x|的零点个数为(  )

查看答案和解析>>

同步练习册答案