【题目】已数列的各项均为正整数,且满足,又.
(1)求的值,猜想的通项公式并用数学归纳法证明;
(2)设,求的值;
(3)设,是否存在最大的整数,使得对任意,均有?若存在,求出的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆C的方程为,离心率为,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过动点的直线交轴的负半轴于点,交C于点(在第一象限),且是线段的中点,过点作x轴的垂线交C于另一点,延长线交C于点.
(i)设直线,的斜率分别为,,证明:;
(ii)求直线的斜率的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AB=2AD=2,∠DAB=60°,PA=PC=2,且平面ACP⊥平面ABCD.
(Ⅰ)求证:CB⊥PD;
(Ⅱ)求二面角C-PB-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.
(Ⅰ)求椭圆的离心率及左焦点的坐标;
(Ⅱ)求证:直线与椭圆相切;
(Ⅲ)判断是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:的焦点为,点在上且其横坐标为1,以为圆心、为半径的圆与的准线相切.
(1)求的值;
(2)过点的直线与交于,两点,以、为邻边作平行四边形,若点关于的对称点在上,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数是某一元二次方程的根,则是也一定是这个方程的根;(4)若为虚数,则的平方根为虚数,其中正确的个数为 ( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为,点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M为圆心,1为半径.
(1)求直线l的参数方程和圆C的极坐标方程.
(2)设直线l与圆C相交于AB两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从抛物线上任意一点P向x轴作垂线段,垂足为Q,点M是线段上的一点,且满足
(1)求点M的轨迹C的方程;
(2)设直线与轨迹c交于两点,T为C上异于的任意一点,直线,分别与直线交于两点,以为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com