精英家教网 > 高中数学 > 题目详情

【题目】如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面与此长方体的面相交,交线围成一个正方形。

(1)(I)在图中画出这个正方形(不必说明画法与理由);
(2)(II)求平面 把该长方体分成的两部分体积的比值.

【答案】
(1)

交线围成的正方形EHGF 如图:


(2)


【解析】
(II)作EMAB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8,因为EHGF是正方形,所以EH=EF=BC=10,于是MH=,AH=10,HB=6,因为长方体被平面分成两个高为10的直棱柱,所以其体积比值为也正确)。
【考点精析】解答此题的关键在于理解空间几何体的直观图的相关知识,掌握立体图形的直观图要严格按照斜二测画法,在直观图中,原来与轴平行的线段仍然与轴平行,角的大小一般都会改变.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是
(1)求角C;
(2)若△ABC的中线CD的长为1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 ,(其中φ为参数),曲线 ,以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l:θ=α(ρ≥0)与曲线C1 , C2分别交于点A,B(均异于原点O)
(1)求曲线C1 , C2的极坐标方程;
(2)当 时,求|OA|2+|OB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 ,(其中φ为参数),曲线 ,以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l:θ=α(ρ≥0)与曲线C1 , C2分别交于点A,B(均异于原点O)
(1)求曲线C1 , C2的极坐标方程;
(2)当 时,求|OA|2+|OB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1(t为参数,且t≠0),其中0 , 在以O为极点x轴正半轴为极轴的极坐标系中,曲线C2:=2sin , C3:=2cos
(1)求C2与C3交点的直角坐标
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1,(ab0)的离心率为,点(2,)在C上
(1)求C的方程;
(2)直线l不经过原点O,且不平行于坐标轴,lC有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标I卷)函数f(x)=cos(x+)的部分图像如图所示,则f(x)的单调递减区间为( )

A.(k-,k+), kZ
B.(2k-,2k+),kZ
C.(k-,k+), kZ
D.(2k-,2k+),kZ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)如图,椭圆E:(a>b>0)经过点A(0,-1),且离心率为.

(1)求椭圆E的方程;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.

查看答案和解析>>

同步练习册答案