精英家教网 > 高中数学 > 题目详情
在数学中,等与不等是相对的,例如“当a≤b且a≥b时,我们就可以得到a=b”.设二次函数f(x)=ax2+bx+c(a,b,c∈R),且满足f(-1)=0,对于任意实数x都有f(x)-x≥0,且当x∈(0,2)时,f(x)≤(
x+1
2
)2

(Ⅰ)求f(1)的值;
(Ⅱ)求证:a>0,c>0;
(Ⅲ)当x∈[-1,1]时,函数g(x)=f(x)-mx(m∈R)是单调的,求实数m的取值范围.
考点:函数单调性的性质,基本不等式
专题:函数的性质及应用
分析:(I)由于对于任意实数x都有f(x)-x≥0,且当x∈(0,2)时,f(x)≤(
x+1
2
)2
.可得f(1)≥1,f(1)≤(
1+1
2
)2
=1.
(II)由
f(-1)=0
f(1)=1
可得b=a+c=
1
2
.对于任意实数x都有f(x)-x≥0,可得ax2-
1
2
x+c≥0
a>0
△=
1
4
-4ac≤0
,即可得出;
(III)由于
1
2
=a+c≥2
ac
≥2
1
16
=
1
2
,可得a=c=
1
4
.可得g(x)=f(x)-mx=
1
4
x2+(
1
2
-m)x+
1
4
,由于当x∈[-1,1]时,函数g(x)=f(x)-mx(m∈R)是单调的,再利用二次函数的单调性即可得出.
解答: (I)解:∵对于任意实数x都有f(x)-x≥0,且当x∈(0,2)时,f(x)≤(
x+1
2
)2

∴f(1)≥1,f(1)≤(
1+1
2
)2
=1.
∴f(1)=1.
(II)证明:由
f(-1)=0
f(1)=1
可得
a-b+c=0
a+b+c=1
,∴b=a+c=
1
2

对于任意实数x都有f(x)-x≥0,即ax2+(b-1)x+c≥0,
ax2-
1
2
x+c≥0
,∴
a>0
△=
1
4
-4ac≤0

∴a>0,ac≥
1
16
,∴a>0,c>0.
(III)∵
1
2
=a+c≥2
ac
≥2
1
16
=
1
2
,∴a=c=
1
4

∴f(x)=
1
4
x2+
1
2
x+
1
4

∴g(x)=f(x)-mx=
1
4
x2+(
1
2
-m)x+
1
4

∴g(x)=
1
4
[x2+(2-4m)x+1]

又∵当x∈[-1,1]时,函数g(x)=f(x)-mx(m∈R)是单调的,
|
2-4m
2
|≥1
,解得m≥1或m≤0.
点评:本题考查了二次函数的单调性、基本不等式的性质,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设 H1(X)=max{f(x),g(x)},max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值,记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=(  )
A、a2-2a-16
B、a2+2a-16
C、16
D、-16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈N|1<x<5},集合B={x∈N|2<x<6},则A∩B=(  )
A、{2,3}
B、{4,3}
C、{5,3}
D、{44,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,点D在线段BB1上,且BD=
1
3
BB1
,A1C∩AC1=E.
(1)求证:直线DE与平面ABC不平行;
(2)设平面ADC1与平面ABC所成的锐二面角为θ,若cosθ=
7
7
,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名同学在五次考试中数学成绩统计用茎叶图如表示如图2所示,则甲的平均成绩比乙的平均成绩
 
(填高、低、相等);甲成绩的方差比乙成绩的方差
 
(填大、小)

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是棱长为a的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:
①有12个顶点;②有24条棱;③有12个面;④表面积为3a2;⑤体积为
5
6
a3
其中正确的结论是(  )
A、①③④B、①②⑤
C、②③⑤D、②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c在x=1,x=-
2
3
时,都取得极值.
(1)求a、b的值;
(2)若对x∈[-1,2],有f(x)<
1
c
恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.

(Ⅰ)若BD=1,求三棱锥A-BCD的体积;
(Ⅱ)证明:平面ADB⊥平面BDC;
(Ⅲ)设E为BC的中点,求AE与DB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一圆锥的母线长为13,底面半径为5,则这个圆锥的高为
 

查看答案和解析>>

同步练习册答案