精英家教网 > 高中数学 > 题目详情

【题目】某企业生产甲、乙两种产品均需用两种原料,已知每种产品各生产吨所需原料及每天原料的可用限额如下表所示,如果生产吨甲产品可获利润3万元,生产吨乙产品可获利万元,则该企业每天可获得最大利润为___________万元.

【答案】18

【解析】设每天生产甲乙两种产品分别为xy吨,利润为z元,

目标函数为z=3x+4y.

作出二元一次不等式组所表示的平面区域(阴影部分)即可行域。

z=3x+4yy=x+

平移直线y=x+,由图象可知当直线y=x+

经过点B时,直线y=34x+z4的截距最大,

此时z最大,

解方程组

解得:

B的坐标为x=2,y=3,

zmax=3x+4y=6+12=18.

则每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】时下,租车已经成为新一代的流行词,租车自驾游也慢慢流行起来,某小车租车点的收费标准是,不超过2天按照300元计算;超过两天的部分每天收费标准为100元(不足1天的部分按1天计算).有甲乙两人相互独立来该租车点租车自驾游(各租一车一次),设甲、乙不超过2天还车的概率分别为;2天以上且不超过3天还车的概率分别;两人租车时间都不会超过4天.

(1)求甲所付租车费用大于乙所付租车费用的概率;

(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;设有一个回归方程,变量增加一个单位时,平均增加5个单位;线性回归方程必过在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是(

A.0 B.1 C. 2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)

1)求的值;

2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中,.

(1)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的年利润的关系为.根据(2)的结果要求:年宣传费为何值时,年利润最大?

附:对于一组数据 ,…, 其回归直线的斜率和截距的最小二乘估计分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几何证明选讲

在直角坐标系中,曲线的参数方程为是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程,并指出其表示何种曲线;

(2)若曲线与曲线交于两点,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数在其定义域内有两个不同的极值点.

(1)求实数的取值范围;

(2)设两个极值点分别为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;

(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有穷数列:……的各项均为正数,且满足条件:

.

(1)若,求出这个数列;

(2)若,求的所有取值的集合;

(3)若是偶数,求的最大值(用表示).

查看答案和解析>>

同步练习册答案