精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin2x+2sinxcosx+3cos2x.

(1)求函数f(x)的单调递增区间;

(2)若x∈[0,],求函数f(x)的最值及相应x的取值.

【答案】(1)[kπkπ+]kZ;(2)见解析.

【解析】

试题(1)运用二倍角的正弦和余弦公式,及两角和的正弦公式,化简函数f(x),再由正弦函数的周期和单调增区间,解不等式即可得到.(2)由x的范围,可得2x+ 的范围,再由正弦函数的图象和性质,即可得到最值.

试题解析:

(1)fx=sin2x+2sinxcosx+3cos2x=sin2x+2cos2x+1 =sin2x+cos2x+2= sin2x+ +2

2kπ ≤2x+ ≤2kπ+ kZ

≤x≤kπ+ kZ

则有函数的单调递增区间为[kπkπ+]kZ

(2)当x[0]时,2x+ []

则有sin2x+)∈[11]

则当x=时,fx)取得最小值,且为1

x=时,fx)取得最大值,且为+2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求函数的单调区间;

(2)当时,若对任意的恒成立,求实数的值;

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的极值;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设向量 ,其中的两个内角.

(1)若,求证: 为直角;

2)若,求证: 为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

(1)若,则恒成立;

(2)命题“若,则”的逆否命题为“若,则”;

(3)“命题为真”是“命题为真”的充分不必要条件;

(4)命题“”的否定是“”.

其中正确的结论的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C和椭圆有公共的焦点,且离心率为

1)求双曲线C的方程.

2)经过点M21)作直线l交双曲线CAB两点,且MAB的中点,求直线l的方程并求弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)若函数在区间(其中)上存在极值,求实数的取值范围.

Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

Ⅲ)求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句.据此可以推知张博源、高家铭和刘雨恒分别研究的是__________.(A莎士比亚、B雨果、C曹雪芹,按顺序填写字母即可.)

查看答案和解析>>

同步练习册答案