精英家教网 > 高中数学 > 题目详情

(满分12分)
已知二次函数满足:,且
解集为
(1)求的解析式;
(2)设,若上的最小值为-4,求的值.

(1)(2)

解析试题分析:(1)∵ ∴ 即 ① ……2分
又∵的解集为
的两根且a>0. 
 ②         ③           …………5分
由①②③得:a=2,b=1,c=-3
                                   …………6分
(2) 其对称轴方程为
①若即m<-3时,
 得不符合题意          …………8分
②若时,
解得:符合                   …………10分
③若即m>9时,
 得不符合题意
                                          …………12分
考点:利用函数性质求二次函数解析式及最值
点评:本题第二问需讨论抛物线对称轴与给定区间的关系,从而确定最值点的位置,对学生有一定的难度

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量
(1)将利润表示为月产量的函数
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数
(1)若上的最大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数其中.
(Ⅰ)证明:上的减函数;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的偶函数,当时,
(1)用分段函数形式写出上的解析式;   
(2)画出函数的大致图象;并根据图像写出的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是增函数,在(0,1)为减函数.
(I)求的表达式;
(II)求证:当时,方程有唯一解;
(Ⅲ)当时,若内恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(11分) 已知函数在定义域上为增函数,且满足
(1)求的值           (2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
二次函数.
(1)若对任意恒成立,求实数的取值范围;
(2)讨论函数在区间上的单调性;
(3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
(1)化简:
(2)已知的值.

查看答案和解析>>

同步练习册答案