精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的图象两对称轴之间的距离是 ,若将f(x)的图象先向由平移 个单位,再向上平移 个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调递减区间和对称中心.

【答案】
(1)解:∵ =2× ,∴ω=2,∴f(x)=sin(2x+φ)﹣b.

又g(x)=sin[2(x﹣ )+φ]﹣b+ 为奇函数,且0<φ<π,则φ= ,b=

故f(x)=sin(2x+ )﹣


(2)解:令2x+ =kπ,k∈z,求得:x= ,k∈Z,

故函数的对称中心为:( ,﹣ ),k∈Z,

令2kπ+ ≤2x+ ≤2kπ+ ,k∈z,求得: +kπ≤x≤ +kπ,(k∈Z),

故函数的减区间为[ +kπ, +kπ](k∈Z)


【解析】(1)由周期求得ω,由函数g(x)为奇函数求得φ和b的值,从而得到函数f(x)的解析式.(2)令2kπ+ ≤2x+ ≤2kπ+ ,k∈z,求得x的范围,即可得到函数的减区间,令2x+ =kπ,k∈z,求得x,即可解得函数的对称中心.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若不等式x2﹣ax+b<0的解集为(1,2),则不等式 的解集为(
A.( ,+∞)
B.(﹣∞,0)∪( ,+∞)
C.( ,+∞)
D.(﹣∞,0)∪( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】使函数y=sin(2x+θ)+ cos(2x+θ)为奇函数,且在[0, ]上是减函数的θ一个值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线上的所有点横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后,得到曲线,在以为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程是.

(1)写出曲线的参数方程和直线的直角坐标方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用区间表示);
(2)求函数f(x)=x2﹣(1+a)x+a在D内的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:
①命题“x∈R,x2+x+1=0”的否定是“x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤﹣1},则A∩(RB)=A;
③函数f(x)=sin(ωx+φ)(ω>0)是偶函数的充要条件是φ=kπ+ (k∈Z);
④若非零向量 满足 (λ∈R),则λ=1.
其中正确命题的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设M={x| },N={x|x2+(a﹣8)x﹣8a≤0},命题p:x∈M,命题q:x∈N.
(1)当a=﹣6时,试判断命题p是命题q的什么条件;
(2)求a的取值范围,使命题p是命题q的一个必要但不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,设动点M(2,t)(t>0).
(1)若过点P(0,4 )的直线l与圆C:x2+y2﹣8x=0相切,求直线l的方程;
(2)求以OM为直径且被直线3x﹣4y﹣5=0截得的弦长为2的圆的方程;
(3)设A(1,0),过点A作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段AB的长为2,动点C满足 =λ(λ为负常数),且点C总不在以点B为圆心, 为半径的圆内,则实数λ的最大值是

查看答案和解析>>

同步练习册答案