【题目】已知:函数,当x∈(-3,2)时,>0,当x∈(-,-3)(2,+)时,<0
(I)求a,b的值;
(II)若不等式的解集为R,求实数c的取值范围.
科目:高中数学 来源: 题型:
【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
【答案】C
【解析】如图△ADE∽△ABC,设矩形的另一边长为y,则,所以,又,所以,即,解得.
【考点定位】本题考查平面几何知识和一元二次不等式的解法,对考生的阅读理解能力、分析问题和解决问题的能力以及探究创新能力都有一定的要求.属于难题.
【题型】单选题
【结束】
10
【题目】设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A. 5 B. 4 C. 3 D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E,F分别为PC,BD的中点.
求证:(1)EF∥平面PAD;
(2)PA⊥平面PDC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知( +1)m= xm+ym , 其中m,xm , ym∈N* .
(1)求证:ym为奇数;
(2)定义:[x]表示不超过实数x的最大整数.已知数列{an}的通项公式为an=[ n],求证:存在{an}的无穷子数列{bn},使得对任意的正整数n,均有bn除以4的余数为1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com