精英家教网 > 高中数学 > 题目详情

【题目】已知:函数,当x∈(-3,2)时,>0,当x∈(-,-3)(2,+)时,<0

(I)求ab的值;

(II)若不等式的解集为R,求实数c的取值范围.

【答案】(I);(II)c≤

【解析】

(I)由题意得-3,2是方程ax2+(b-8)x-a-ab=0的两根,利用韦达定理可解得a和b;(II)不等式ax2+bx+c≤0的解集为R,即成立,将(I)中的结果代入即可解出实数c的取值范围.

(I)由题目知的图象是开口向下,交x轴于两点A(-3,0)B(2,0)的抛物线,

即当x=-3x=2时,有y=0, 解得:

由已知可得函数为二次函数,故不符合题意,舍去,

.

(II)g(x)= ,要使的解集为R,

则需要方程的根的判别式≤0,=25+12c≤0,

解得c≤ ∴当c≤时,≤0的解集为R.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )

(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]

【答案】C

【解析】如图ADE∽△ABC,设矩形的另一边长为y,则,所以,又,所以,即,解得.

【考点定位】本题考查平面几何知识和一元二次不等式的解法,对考生的阅读理解能力、分析问题和解决问题的能力以及探究创新能力都有一定的要求.属于难题.

型】单选题
束】
10

【题目】设等差数列{an}的前n项和为Sn,若Sm1=-2,Sm=0,Sm1=3,则m=(  )

A. 5 B. 4 C. 3 D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且 ,数列{bn}满足 ,则数列{anbn}的前n项和Tn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥PABCD底面ABCD是正方形侧面PAD⊥底面ABCDPAPDADEF分别为PCBD的中点.

求证:(1)EF∥平面PAD

(2)PA⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数满足, 函数的图像是的图像的一部分. 若关于的方程个不同的实数根, 则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动直线2ax+(a+c)y+2c=0(a∈R,c∈R)过定点(m,n),x1+x2+m+n=15 且x1>x2 , 则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知( +1)m= xm+ym , 其中m,xm , ym∈N*
(1)求证:ym为奇数;
(2)定义:[x]表示不超过实数x的最大整数.已知数列{an}的通项公式为an=[ n],求证:存在{an}的无穷子数列{bn},使得对任意的正整数n,均有bn除以4的余数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)求函数的零点;

(Ⅱ)讨论在区间上的单调性;

(Ⅲ)在区间上,是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案