精英家教网 > 高中数学 > 题目详情

【题目】如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.

1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;

2)怎样围才能使得场地的面积最大?最大面积是多少?

【答案】1y=x(l3x)(0)2)当垂直于墙的边长为时,这块长方形场地的面积最大,最大面积为.

【解析】

1由已知可得面积y=x(l3x),由x>0,且l3x>0,即可求得定义域;

2)对面积公式运用基本不等式即可求出面积的最值.

解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l3x)

x>0,且l3x>0,可得函数的定义域为(0)

(2)×=

x=时,这块长方形场地的面积最大,这时的长为l3x=,最大面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为庆祝成立二十周年,特举办《快乐大闯关》竞技类有奖活动,该活动共有四关,由两名男职员与两名女职员组成四人小组,设男职员闯过一至四关概率依次是,女职员闯过一至四关的概率依次是

(1)求女职员闯过四关的概率;

(2)设表示四人小组闯过四关的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式对任意实数都成立,则实数的取值范围_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“水是生命之源”,但是据科学界统计可用淡水资源仅占地球储水总量的,全世界近人口受到水荒的威胁.某市为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨):一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)设该市有60万居民,估计全市居民中月均用水量不低于2.5吨的人数,并说明理由;

(3)若该市政府希望使的居民每月的用水不按议价收费,估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题函数的值域为;命题,不等式恒成立,如果命题“”为真命题,且“”为假命题,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量=(1x),=(2x+3,-x),xR.

1)若,求x的值;

2)若,求|-|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)若函数在点处的切线与直线平行,求实数的值;

(2)若函数上单调递增,求实数的取值范围;

(3)在(1)的条件下,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且成等差数列

1)若,求的面积

2)若成等比数列,试判断的形状

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数处的切线垂直于轴,求实数的值;

2)在(1)的条件下,求函数的单调区间;

3)若时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案