精英家教网 > 高中数学 > 题目详情
12.甲乙两人从1,2,3,…,10中各任取一数(不重复),已知甲取到的数是5的倍数,则甲数大于乙数的概率为$\frac{13}{18}$.

分析 先求出基本事件总数n=$8×2+{A}_{2}^{2}$=18,再利用列举法求出甲数小于乙数包含的基本基本事件,由此能求出甲数大于乙数的概率.

解答 解:甲乙两人从1,2,3,…,10中各任取一数(不重复),甲取到的数是5的倍数,
基本事件总数n=$8×2+{A}_{2}^{2}$=18,
甲数小于乙数的基本事件有:
(5,6),(5,7),(5,8),(5,9),(5,10),
∴甲数大于乙数的概率为p=1-$\frac{5}{18}$=$\frac{13}{18}$.
故答案为:$\frac{13}{18}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.据俄罗斯新罗西斯克2015年5月17日电 记者吴敏、郑文达报道:当地时间17日,参加中俄“海上联合-2015(Ⅰ)”军事演习的9艘舰艇抵达地中海预定海域,混编组成海上联合集群.接到命令后我军在港口M要将一件重要物品用小艇送到一艘正在航行的俄军轮船上,在小艇出发时,轮船位于港口M北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值并说明你的推理过程;
(3)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆的半径为πcm,则120°的圆心角所对的弧长是(  )
A.$\frac{π}{3}$cmB.$\frac{{π}^{2}}{3}$cmC.$\frac{2π}{3}$cmD.$\frac{2{π}^{2}}{3}$cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.一个人打靶,打了10发子弹,有7发子弹中靶,因此这个人中靶的概率为0.7
B.一个同学做掷硬币试验,掷了6次,一定有3次“正面朝上”
C.某地发行福利彩票,其回报率为47%,有个人花了100元钱买彩票,一定会有47元的回报
D.大量试验后,一个事件发生的频率在0.75附近波动,可以估计这个事件发生的概率为0.75

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:选择题

的前项和.在中,正数的个数是( )

A.25 B.50 C.75 D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z=(a+1)+(a2-3)i,若z<0,则实数a的值是(  )
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{\begin{array}{l}lgx,x≥1\\ 1-3x,x<1\end{array}\right.$,则f(f(-3))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=2x+x2-xln2-2,若函数g(x)=|f(x)|-loga(x+2)(a>1)在区间[-1,1]上有4个不同的零点,则实数a的取值范围是(  )
A.(1,2)B.(2,+∞)C.[3${\;}^{\frac{1}{1-ln2}}$,+∞)D.(2,3${\;}^{\frac{1}{1-ln2}}$]

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高二理下学期期末考试数学试卷(解析版) 题型:解答题

面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A、B、C三个独立的研究机构在一定的时期研制出疫苗的概率分别为.求:

(1)他们能研制出疫苗的概率;

(2)至多有一个机构研制出疫苗的概率.

查看答案和解析>>

同步练习册答案