精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】分析:(1)根据短轴一个端点到右焦点的距离为3求出a,然后根据离心率求出b,最后根据a、b、c关系求出b,从而求出椭圆的标准方程;
(2)设P点坐标为(x,y),若∠APB=90°,则有|OA|=|AP|,建立关于x和y的一个方程,然后根据P(x,y)在椭圆上,建立第二个方程,解之即可求出所求.
解答:解:(1)设椭圆的半焦距为c,依题意
∴b=2,∴所求椭圆方程为
(2)如图,设P点坐标为(x,y),
若∠APB=90°,则有|OA|=|AP|.


两边平方得x2+y2=8①
又因为P(x,y)在椭圆上,所以4x2+9y2=36②
①,②联立解得
所以满足条件的有以下四组解
所以,椭圆C上存在四个点
分别由这四个点向圆O所引的两条切线均互相垂直.
点评:本题考查了椭圆的标准方程与圆、直线与圆锥曲线的位置关系,以及圆的切线方程,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,此题是个难题.
练习册系列答案
相关习题

科目:高中数学 来源:2013年四川省资阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)经过(1,1)与()两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:++为定值.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

同步练习册答案