精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow a$=(sinθ,cosθ),$\overrightarrow b$=(2,-1),若$\overrightarrow a⊥\overrightarrow b$,则cos2θ+sin2θ=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{7}{5}$

分析 求出tanθ=$\frac{1}{2}$,把所求式子的cos2θ利用二倍角的余弦函数公式化简后,将所求式子的分母“1”变为sin2θ+cos2θ,然后分子分母都除以cos2θ,利用同角三角函数间的基本关系即可得到关于tanθ的关系式,把tanθ的值代入即可求出值.

解答 解:因为向量$\overrightarrow a$=(sinθ,cosθ),$\overrightarrow b$=(2,-1),$\overrightarrow a⊥\overrightarrow b$,
所以2sinθ-cosθ=0
所以tanθ=$\frac{1}{2}$,
所以sin2θ+cos2θ=2sinθcosθ+cos2θ-sin2θ=$\frac{2tanθ+1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$=$\frac{7}{5}$
故选:D.

点评 此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.做题时注意“1”的灵活变换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.曲线y=x+3lnx在点(1,1)处的切线方程为4x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若关于a,b的代数式f(a,b)满足:
①f(a,a)=a
②f(ka,kb)=kf(a,b)
③f(a1+a2,b1+b2)=f(a1,b1)+f(a2,b2
④f(a,b)=f(b,$\frac{a+b}{2}$)
则f(x,y)=(  )
A.$\frac{x-2y}{3}$B.$\frac{2x+y}{3}$C.$\frac{x+2y}{3}$D.$\frac{2x-y}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F,若过点F且倾斜角为450的直线与双曲线的左支没有公共点,则此双曲线的离心率的取值范围是$1<e≤\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC中,$|\overrightarrow{BC}|=6$,$\overrightarrow{AB}•\overrightarrow{AC}=16$,D为边BC的中点,则$|\overrightarrow{AD}|$=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数$f(x)=\left\{\begin{array}{l}x+3,x>4\\ f(x+2)\;,x≤4\end{array}\right.$,则f(1)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,则$\overrightarrow{PA}•\overrightarrow{PB}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.己知命题p:方程$\frac{{x}^{2}}{4-k}$+$\frac{{y}^{2}}{k-1}$=1表示双曲线;q:不等式x2-(k+1)x+k+1>0对一切x>1的实数恒成立.若“p∨q”为真,“p∧q”为假,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{ax}{{e}^{x}}$在x=0处的切线方程为y=x.
(1)求a的值;
(2)若对任意的x∈(0,2),都有f(x)<$\frac{1}{k+2x-{x}^{2}}$成立,求k的取值范围;
(3)若函数g(x)=lnf(x)-b的两个零点为x1,x2,试判断g′($\frac{{x}_{1}+{x}_{2}}{2}$)的正负,并说明理由.

查看答案和解析>>

同步练习册答案