精英家教网 > 高中数学 > 题目详情
在△A BC中,角 A,B,C的对边长分别为a,b,c,a=4,A=45°,B=60°,则b=(  )
A、2
6
B、2
3
C、2
2
D、
16
3
考点:正弦定理
专题:解三角形
分析:由正弦定理可得b=
a•sinB
sinA
,代入已知即可求值.
解答: 解:由正弦定理可得:b=
a•sinB
sinA
=
4×sin60°
sin45°
=2
6

故选:A.
点评:本题主要考查了正弦定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某农场计划种植甲、乙两个品种的蔬菜,总面积不超过300亩,总成本不超过9万元.甲、乙两种蔬菜的成本分别是每亩600元和每亩200元.假设种植这两个品种的蔬菜,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种蔬菜的种植面积,可使农场的总收益最大,最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

“A=∅”是“A∪B=B”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(
π
2
-α)=2sin(
π
2
+α),则tan(π+α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0,
π
4
),a=logα
1
sinα
,b=αsinα,c=αcosα,则(  )
A、c>a>b
B、b>a>c
C、a>c>b
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

若a∈R,则“a=2”是“(a-2)(a+4)=0”的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
2x+1
+sinx,其导函数记为f′(x),则f(2015)+f′(2015)+f(-2015)-f′(2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2ex的导数为(  )
A、y=(2x-x2)ex
B、y=(2x+x2)ex
C、y=(x2-2x)ex
D、y=(x+x2)ex

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程mρcos2θ+3ρsin2θ-6cosθ=0的曲线是椭圆,求实数m的取值范围.

查看答案和解析>>

同步练习册答案