精英家教网 > 高中数学 > 题目详情
精英家教网设函数f(x)=
-x2-2x+15
,集合A={x|y=f(x)},B={y|y=f(x)},则右图中阴影部分表示的集合为(  )
A、[0,3]
B、(0,3)
C、(-5,0]∪[3,4)
D、[-5,0)∪(3,4]
分析:本题考查的知识点是Venn图表达集合的关系及运算及函数定义域和值域的求法,由集合A={x|y=f(x)},B={y|y=f(x)},集合A,B分别表示函数f(x)=
-x2-2x+15
的定义域和值域,求出集合A与B后,分析韦恩图表示的含义,即可得到结果.
解答:解:由-x2-2x+15≥0
即x2+2x-15≤0,
得-5≤x≤3,
故A=[-5,3].
f(x)=
-x2-2x+15
=
-(x+1)2+16
∈[0,4]

得B=[0,4].
从而A∪B=[-5,4],
A∩B=[0,3].
阴影部分表示由在A∪B内且不在A∩B内的元素构成的集合,
故答案选D.
点评:本小题考查集合的概念、函数的定义域和值域等知识,并通过韦恩图“隐性”考查集合的交、并、补等基本运算,题目设置巧妙,令人耳目一新.审题时,要注意集合A和B是不同的,分别表示函数f(x)的定义域和值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:
①函数f(x)=(
12
)x
为R上的l高调函数;
②函数f(x)=sin2x为R上的π高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);
其中正确的命题是
②③
②③
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案