精英家教网 > 高中数学 > 题目详情

【题目】已知是正三棱柱,DAC中点.

(1)证明: 平面;

(2)若,求二面角的度数.

【答案】(1)见解析(2) .

【解析】试题分析

本题主要考查线面平行的判定和二面角的求法(1)连接于点E连接ED根据中位线定理证明即可(2)通过建立空间直角坐标系得到点的坐标后求出平面和平面的法向量利用两向量的夹角即可得所求

试题解析

证明:(1)连接于点E,连接ED.

因为是矩形,

所以E中点,

所以的中位线

所以,

平面 平面.

所以∥平面.

(2)设,建立如图所示的空间直角坐标系xyz,

,

因为

所以

解得(舍去),

设平面

,得.

,则,

又平面的法向量为,

所以,

由图形知二面角为锐角,

所以二面角的度数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

)当为自然对数的底数)时,求的极小值;

Ⅱ)若函数存在唯一零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中, 于点 ,且.沿折起到的位置(如图),使

I)求证: 平面

II)求三棱锥的体积.

III)线段上是否存在点,使得平面,若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

图1:乙套设备的样本的频率分布直方图

(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

,求的期望.

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明设置的手机开机密码若连续3次输入错误,则手机被锁定5分钟后,方可重新输入

某日,小明忘记了开机密码,但可以确定正确的密码是他常用的4个密码之一,于是,他

决定逐个(不重复)进行尝试

1)求手机被锁定的概率;

2)设第次输入后能成功开机,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点上的点,满足.

1)当点在圆上运动时,求点的轨迹方程;

2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2ex (x0)g(x)x2ln(xa)图象上存在关于y轴对称的点a的取值范围是(  )

A. () B. ()

C. ( ) D. ( )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥SABCD中,SAAB=2,EFG分别为BCSCCD的中点.设P为线段FG上任意一点.

(1)求证:EPAC

(2)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列结论正确的是(  )

A. 导函数为

B. 函数f(x)的图象关于直线对称

C. 函数f(x)在区间上是增函数

D. 函数f(x)的图象可由函数y3cos 2x的图象向右平移个单位长度得到

查看答案和解析>>

同步练习册答案