【题目】某厂使用两种零件、装配两种产品、,该厂的生产能力是月产产品最多有2500件,月产产品最多有1200件;而且组装一件产品要4个、2个,组装一件产品要6个、8个,该厂在某个月能用的零件最多14000个;零件最多12000个.已知产品每件利润1000元,产品每件2000元,欲使月利润最大,需要组装、产品各多少件?最大利润多少万元?
科目:高中数学 来源: 题型:
【题目】若定义在D上的函数满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界,已知函数,.
求函数在上的值域,判断函数在上是否为有界函数,并说明理由;
若函数在上是以3为上界的函数,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆W:的左焦点F1作直线l1交椭圆于A,B两点,其中A(0,1),另一条过F1的直线l2交椭圆于C,D两点(不与A,B重合),且D点不与点0,﹣1重合.过F1作x轴的垂线分别交直线AD,BC于E,G.
(1)求B点坐标和直线l1的方程;
(2)比较线段EF1和线段GF1的长度关系并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:
可能与平面平行;
与BC所成的最大角为;
与PQ一定垂直;
与所成的最大角的正切值为;
.
其中正确的有______写出所有正确命题的序号
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,对于点、直线,我们称为点到直线的方向距离.
(1)设双曲线上的任意一点到直线,的方向距离分别为,求的值;
(2)设点、到直线的方向距离分别为,试问是否存在实数,对任意的都有成立?说明理由;
(3)已知直线和椭圆,设椭圆的两个焦点到直线的方向距离分别为满足,且直线与轴的交点为、与轴的交点为,试比较的长与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )
A. 关于直线对称 B. 关于直线对称
C. 关于点对称 D. 关于点对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
()设曲线在处的切线为,到点的距离为,求的值.
()若对于任意实数,恒成立,试确定的取值范围.
()当时,是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率,连接椭圆的四个顶点得到的菱形的面积为.
求椭圆C的方程;
如图所示,该椭圆C的左、右焦点,作两条平行的直线分别交椭圆于A,B,C,D四个点,试求平行四边形ABCD面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com