精英家教网 > 高中数学 > 题目详情
(2012•梅州一模)已知函数f(x)=lnx-
a(x-1)
x+1

(1)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(2)设m,n∈R,且m≠n,求证
m-n
lnm-lnn
m+n
2
分析:(1)根据f(x)的解析式求出f(x)的导函数,通分后根据函数f(x)在(0,+∞)上为单调增函数,得到分子大于0恒成立,解出2a-2小于等于一个函数关系式,利用基本不等式求出这个函数的最小值,列出关于a的不等式,求出不等式的解集即可得到a的取值范围;
(2)把所证的式子利用对数的运算法则及不等式的基本性质变形,即要证ln
m
n
-
2(
m
n
-1)
m
n
+1
>0,根据(1)得到h(x)在x大于等于1时单调递增,且
m
n
大于1,利用函数的单调性可得证.
解答:解:(1)f′(x)=
1
x
-
a(x+1)-a(x-1)
(x+1)2
=
(x+1)2-2ax
x(x+1)2
=
x2+(2-2a)x+1
x(x+1)2

因为f(x)在(0,+∞)上为单调增函数,所以f′(x)≥0在(0,+∞)上恒成立
即x2+(2-2a)x+1≥0在(0,+∞)上恒成立,
当x∈(0,+∞)时,由x2+(2-2a)x+1≥0,
得:2a-2≤x+
1
x

设g(x)=x+
1
x
,x∈(0,+∞),
则g(x)=x+
1
x
≥2
x•
1
x
=2,当且仅当x=
1
x
即x=1时,g(x)有最小值2,
所以2a-2≤2,解得a≤2,所以a的取值范围是(-∞,2];
(2)要证
m-n
lnm-lnn
m+n
2
,只需证
m
n
-1
ln
m
n
m
n
+1
2

即ln
m
n
2(
m
n
-1)
m
n
+1
,即ln
m
n
-
2(
m
n
-1)
m
n
+1
>0,
设h(x)=lnx-
2(x-1)
x+1

由(1)知h(x)在(1,+∞)上是单调增函数,又
m
n
>1,
所以h(
m
n
)>h(1)=0,即ln
m
n
-
2(
m
n
-1)
m
n
+1
>0成立,
得到
m-n
lnm-lnn
m+n
2
点评:此题考查学生会利用导函数的正负确定函数的单调区间,掌握不等式恒成立时所满足的条件,会利用基本不等式求函数的最小值,是一道中档题.在证明第(2)时注意利用第(1)问中的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•梅州一模)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州一模)执行如图所示的程序框图,则输出的结果为
5
11
5
11

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州一模)已知命题p:a,b,c成等比数列的充要条件是b2=ac;命题q:?x∈R,x2-x+1>0,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州一模)设f(x)=ex+x,若f′(x0)=2,则在点(x0,y0)处的切线方程为
2x-y+1=0
2x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州一模)从集合U={1,2,3,4}的子集中选出4个不同的子集,需同时满足以下两个条件:①∅,U都要选出;②对选出的任意子集A和B,必有A⊆B或A?B.那么共有
36
36
不同的选法.

查看答案和解析>>

同步练习册答案