精英家教网 > 高中数学 > 题目详情

【题目】某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系式近似满足P= ,商品的日销售量Q(件)与时间t(天)的函数关系式近似满足Q=﹣t+40(1≤t≤30,t∈N).
(1)求这种商品日销售金额y与时间t的函数关系式;
(2)求y的最大值,并指出日销售金额最大的一天是30天中第几天.

【答案】
(1)解:设日销售金额为y元,则y=PQ,

即,y= ,t∈N


(2)解:当1≤t≤24时,y=﹣(t﹣10)2+900,

故当t=10时,ymax=900;

当25≤t≤30时,y=(t﹣70)2﹣900,

故当t=25时,ymax=1125.

故该商品日销售金额的最大值为1125元,且近30天中第25天销售金额最大


【解析】(1)设日销售金额为y元,则y=PQ,利用分段函数写出函数表达式;(2)当1≤t≤24时,y=﹣(t﹣10)2+900,当25≤t≤30时,y=(t﹣70)2﹣900,分别求最值,从而得到分段函数的最值及最值点.
【考点精析】解答此题的关键在于理解函数的最值及其几何意义的相关知识,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为R,则实数a的取值范围为(
A.(0,1)
B.[0,1]
C.(0,1]
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=log2 log4 + (2≤x≤2m , m>1,m∈R)
(1)求x=4 时对应的y值;
(2)求该函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y= 的定义域为(
A.(﹣∞,1]
B.(﹣∞,2]?
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形 ,以的中点为原点,建立如图所示的平面直角坐标系.

(1)求以为焦点,且过两点的椭圆的标准方程;

(2)在(1)的条件下,过点作直线与椭圆交于不同的两点,设,点坐标为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合M={x|﹣2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),当x>0时,f(x)=2;则奇函数f(x)的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图象在处的切线方程为.

(1)判断函数的单调性;

(2)已知,且,若对任意,任意 中恰有一个恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),f(0)≠0,f(1)=2,当x>0,f(x)>1,且对任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求证:对任意x∈R,都有f(x)>0;
(2)判断f(x)在R上的单调性,并用定义证明;
(3)求不等式f(3﹣2x)>4的解集.

查看答案和解析>>

同步练习册答案