精英家教网 > 高中数学 > 题目详情
设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合,对于A∈S(m,n),记ri(A)为A的第i行各数之和(1≤i≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值。
(1)如表A,求K(A)的值;
(2)设数表A∈(2,3),形如下表,求K(A)的最大值。
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
解:(1)由题意可知r1(A)=1.2,r2(A)=-1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=-1.8
∴K(A)=0.7 。
(2)先用反证法证明k(A)≤1:
若k(A)>1 则|c1(A)|=|a+1|=a+1>1,
∴a>0
同理可知b>0,
∴a+b>0
由题目所有数和为0
即a+b+c=-1
∴c=-1-a-b<-1 与题目条件矛盾
∴k(A)≤1
易知当a=b=0时,k(A)=1存在
∴k(A)的最大值为1。
(3)k(A)的最大值为
首先构造满足的A={aij}(i=1,2,j=1,2,…,2t+1);


经计算知,A中每个元素的绝对值都小于1,所有元素之和为0,



下面证明是最大值,若不然,则存在一个数表A∈S(2,2t+1),使得
由k(A)的定义知A的每一列两个数之和的绝对值都不小于x,而两个绝对值不超过1的数的和,其绝对值不超过2,故A的每一列两个数之和的绝对值都在区间[x,2]中,由于x>1,故A的每一列两个数符号均与列和的符号相同,且绝对值均不小于x-1
设A中有g列的列和为正,有h列的列和为负,由对称性不妨设g<h,则g≤t,h≥t+1
另外,由对称性不妨设A的第一行行和为正,第二行行和为负
考虑A的第一行,由前面结论知A的第一行有不超过t个正数和不少于t+1个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于x-1(即每个负数均不超过1-x)
因此|r1(A)|=r1(A)≤t?1+(t+1)(1-x)=2t+1-(t+1)x=x+(2t+1-(t+2)x)<x,
故A的第一行行和的绝对值小于x,与假设矛盾
因此k(A)的最大值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 
1 2 3 -7
-2 1 0 1
表1
(Ⅱ) 数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;
a a2-1 -a -a2
2-a 1-a2 a-2 a2
表2
(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 1 -0.8
0.1 -0.3 -1
(2)设数表A∈S(2,3)形如
1 1 c
a b -1
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.

(Ⅰ) 数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 

1

2

3

﹣7

﹣2

1

0

1

表1

(Ⅱ) 数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;

a

a2﹣1

﹣a

﹣a2

2﹣a

1﹣a2

a﹣2

a2

表2

(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

同步练习册答案