【题目】在直角坐标系xOy中,直线l的方程是y=8,圆C的参数方程是 (φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)射线OM:θ=α(其中 )与圆C交于O、P两点,与直线l交于点M,射线ON: 与圆C交于O、Q两点,与直线l交于点N,求 的最大值.
【答案】
(1)解:∵直线l的方程是y=8,∴直线l的极坐标方程是ρsinθ=8.
∵圆C的参数方程是 (φ为参数),
∴圆C的普通方程分别是x2+(y﹣2)2=4,
即x2+y2﹣4y=0,
∴圆C的极坐标方程是ρ=4sinθ.
(2)解:依题意得,点P,M的极坐标分别为 和 ,
∴|OP|=4sinα,|OM|= ,
从而 = = .
同理, = .
∴ = = ,
故当 时, 的值最大,该最大值是 .
【解析】(Ⅰ)由直线的直角坐标方程能求出直线l的极坐标方程,由圆C的参数方程,能求出圆C的普通方程,从而能求出圆C的极坐标方程.(Ⅱ)求出点P,M的极坐标,从而 = , = ,由此能求出 的最大值是 .
科目:高中数学 来源: 题型:
【题目】在正项等比数列{an}和正项等差数列{bn}中,已知a1 , a2017的等比中项与b1 , b2017的等差中项相等,且 + ≤1,当a1009取得最小值时,等差数列{bn}的公差d的取值集合为( )
A.{d|d≥ }
B.{d|0<d< }
C.{ }
D.{d|d≥ }
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆E: + =1(a>0)的焦点在x轴上.
(Ⅰ)若椭圆E的离心率e= a,求椭圆E的方程;
(Ⅱ)设F1、F2分别是椭圆E的左、右焦点,P为直线x+y=2 与椭圆E的一个公共点,直线F2P交y轴于点Q,连结F1P,问当a变化时, 与 的夹角是否为定值,若是定值,求出该定值,若不是定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式f(x)=anxn+an﹣1xn﹣1+…+a1x+a0的值的秦九韶算法,即将f(x)改写成如下形式:f(x)=(…((anx+an﹣1)x+an﹣2)x+…+a1)x+a0 , 首先计算最内层一次多项式的值,然后由内向外逐层计算一次多项式的值,这种算法至今仍是比较先进的算法,将秦九韶算法用程序框图表示如图,则在空白的执行框内应填入( )
A.v=vx+ai
B.v=v(x+ai)
C.v=aix+v
D.v=ai(x+v)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,满足 .
(1)求∠ABC;
(2)若 ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的多面体中,ABCD是平行四边形,BDEF是矩形,ED⊥面ABCD,∠ABD= ,AB=2AD.
(Ⅰ)求证:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF与平面AEC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=cos2x图象向左平移φ(0<φ< )个单位后得到函数g(x)的图象,若函数g(x)在区间[﹣ , ]上单调递减,且函数g(x)的最大负零点在区间(﹣ ,0)上,则φ的取值范围是( )
A.[ , ]
B.[ , )
C.( , ]
D.[ , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1A于P点. (Ⅰ)求P点的轨迹C的方程;
(Ⅱ)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,若kEGkFH=﹣ ,求证:四边形EFGH的面积为定值,并求出此定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com