精英家教网 > 高中数学 > 题目详情
设p为椭圆等
x2
m
+
y2
24
=1(m≥32)上的一点,F1,F2是该椭圆的两个焦点,若cos∠F1PF2=
5
13
则△PF1F2的面积是(  )
A.48B.16
C.32D.与m有关的值
∵m≥32,可得椭圆的焦点在x轴上
∴长轴2a=2
m
,c2=m+24
∵△F1PF2中,cos∠F1PF2=
5
13

∴|F1F2|2=|F1P|2+|PF2|2-2F1P•PF2cos∠F1PF2
即4c2=(|F1P|+|PF2|)2-2F1P•PF2(1+cos∠F1PF2
可得4c2=4a2-2F1P•PF2(1+
5
13
),得
18
13
F1P•PF2=2a2-2c2=2b2=48
∴F1P•PF2=
104
3

∵sin∠F1PF2=
1-(
5
13
)2
=
12
13

∴由正弦定理,得△PF1F2的面积为
SPF1F2=
1
2
F1P•PF2sin∠F1PF2=
1
2
×
104
3
×
12
13
=16
故选:B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在坐标原点,焦点在x轴上,椭圆与x轴的交点到两焦点的距离分别是3和1,则椭圆的标准方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m是正实数.若椭圆
x2
m2+16
+
y2
9
=1
的焦距为8,则m=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上异于长轴端点A、B的任意点,若直线PA、PB的斜率乘积kPA•kPB=-
2
3
,则该椭圆的离心率为(  )
A.
3
3
B.
6
6
C.
1
2
D.
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求以椭圆
x2
16
+
y2
9
=1的短轴的两个端点为焦点,且过点A(4,-5)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A(x1y1),B(4,
9
5
),C(x2y2)
是右焦点为F的椭圆
x2
25
+
y2
9
=1
上三个不同的点,则“|AF|,|BF|,|CF|成等差数列”是“x1+x2=8”的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既非充分也非必要

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若M,N是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上关于原点对称的两个点,P是椭圆C上任意一点.若直线PM、PN斜率存在,则它们斜率之积为(  )
A.
a2
b2
B.-
a2
b2
C.
b2
a2
D.-
b2
a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆的两个焦点,满足
MF1
MF2
的点M总在椭圆内部,则椭圆离心率的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆a2x2+y2=a2(0<a<1)上离顶点A(0,a)最远点为(0,-a),则a的取值范围是(  )
A.0<a<1B.
2
2
≤a<1
C.
2
2
<a<1
D.0<a<
2
2

查看答案和解析>>

同步练习册答案