精英家教网 > 高中数学 > 题目详情

的方程为,圆的方程为

,过圆上任意一点作圆的两条切线,切点分别为,则的最小值是              

 

【答案】

6

【解析】解:因为过其中一个圆上一点做另一圆的切线,则向量数量积的最小值就是模长与模长的积乘以夹角的余弦值的最小值问题。可以利用直线与圆相切的性质得到模长,进而表示得到最小值为6.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C中心在坐标原点O焦点在x上,F1,F2分别是椭圆C左、右焦点,M椭圆短轴的一个端点,过F1的直线l椭圆交于A、B两点,△MF1F2的面积为4,△ABF2的周长为8
2

(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0)存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切.若存在,求出点P坐标及圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C中心在坐标原点O焦点在x上,F1,F2分别是椭圆C左、右焦点,M椭圆短轴的一个端点,过F1的直线l椭圆交于A、B两点,△MF1F2的面积为4,△ABF2的周长为8
2

(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0)存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切.若存在,求出点P坐标及圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

图6

我们把由半椭圆=1(x≥0)与半椭圆=1(x≤0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0.

如图6,点F0、F1、F2是相应椭圆的焦点,A1、A2和B1、B2分别是“果圆”与x、y轴的交点.〔(文)M是线段A1A2的中点〕

(1)(理)若△F0F1F2是边长为1的等边三角形,求“果圆”的方程.

(2)(理)当|A1A2|>|B1B2|时,求的取值范围.

(文)设P是“果圆”的半椭圆=1(x≤0)上任意一点,求证:当|PM|取得最小值时,P在点B1、B2或A1处.

(3)(理)连结“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数k,使斜率为k的“果圆”平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k值;若不存在,请说明理由.

(文)若P是“果圆”上任意一点,求|PM|取得最小值时点P的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

        已知椭圆C的中心在的点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为

   (I)求椭圆C的方程;

   (II)设点Q的从标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

        已知椭圆C的中心在的点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为

   (I)求椭圆C的方程;

   (II)设点Q的从标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案