精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆 的离心率为 为椭圆的右焦点, .

(Ⅰ)求椭圆的方程;

(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过,交直线于点,求证: .

【答案】(Ⅰ);(Ⅱ)见解析.

【解析】试题分析:(1)由题中条件要得两个等式,再由椭圆中的等式关系可得的值,求得椭圆的方程;

(2)可设直线的方程,联立椭圆方程,由根与系数的关系得所以直线的方程是 .令,得, 得直线的斜率是 ,问题得解.

试题解析:

(Ⅰ)设椭圆的半焦距为.依题意,得

解得 .所以 ,所以椭圆方程

(Ⅱ)解法一:由(Ⅰ)得 .设的中点

设直线的方程为: ,将其代入椭圆方程,整理得

,所以 .所以

.所以直线的斜率是

所以直线的方程是 .令,得

,得直线的斜率是

因为,所以直线的斜率为,所以直线

解法二:由(Ⅰ)得 .设,其中

因为的中点为,所以 .所以直线的斜率是 ,所以直线的方程是 .令,得

,得直线的斜率是 .因为直线的斜率是 ,所以 ,所以 .因为 ,所以

点晴:本题主要考查直线与圆锥曲线位置关系. 直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:

停靠时间

2.5

3

3.5

4

4.5

5

5.5

6

轮船数量

12

12

17

20

15

13

8

3

(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;

(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)若,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:

(Ⅰ)求此活动中各公园幸运之星的人数;

(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;

(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):

据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.

附临界值表及公式: ,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 为椭圆的右焦点, .

(Ⅰ)求椭圆的方程;

(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过,交直线于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,以上顶点和右焦点为直径端点的圆与直线相切.

(1)求椭圆的标准方程;

(2)对于直线和点,椭圆上是否存在不同的两点关于直线对称,且,若存在实数的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2当x=-2时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面 平面 分别为的中点.

1)求证: 平面

2)求证:平面 平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为自然对数的底数).

(1)设曲线处的切线为,若与点的距离为,求的值;

(2)若对于任意实数 恒成立,试确定的取值范围;

(3)当时,函数上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案