精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的焦距为2,左右焦点分别为,以原点O为圆心,以椭圆C的半短轴长为半径的圆与直线相切.

求椭圆C的方程;

设不过原点的直线l与椭圆C交于AB两点.

若直线的斜率分别为,且,求证:直线l过定点,并求出该定点的坐标;

若直线l的斜率是直线OAOB斜率的等比中项,求面积的取值范围.

【答案】1;(2)(i)直线过定点,该定点的坐标为;(ii面积的取值范围为

【解析】

试题(1)先根据抛物线的焦点,再结合椭圆几何条件得当点为椭圆的短轴端点时,面积最大,此时,所以.(2)(i)证明直线过定点问题,一般方法以算代证,即求出直线方程,根据方程特征确定其过定点,本题关键求出之间关系即可得出直线过定点.由,即,因此联立直线与椭圆方程,结合韦达定理可得;(ii)先分析条件:直线的斜率时直线斜率的等比中项,即,化简得,联立直线与椭圆方程,结合韦达定理可得,这样三角形面积可用m表示,其中高利用点到直线距离得到,底边边长利用弦长公式得到:,最后根据基本不等式求最值

试题解析:(1)由抛物线的方程得其焦点为,所以椭圆中

当点为椭圆的短轴端点时,面积最大,此时,所以

为椭圆的左、右焦点,为椭圆上任意一点,面积的最大值为1

所以椭圆的方程为

2)联立

,得*

,则

i,由,得

所以,即

所以直线的方程为,因此直线恒过定点,该定点坐标为

ii)因为直线的斜率是直线斜率的等比中项,所以,即

,得,所以,又,所以

代入(*),得

设点到直线的距离为,则

所以

当且仅当,即时,面积取最大值

面积的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数处的切线与直线平行.

1)求实数

2)求函数的单调区间;

3)设 恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点.

(1)求实数的取值范围;

(2)设,若函数的两个极值点恰为函数的两个零点,当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共14分)如图,在三棱锥中, 底面

,点分别在棱上,且)求证: 平面;()当的中点时,求与平面所成的角的大小;()是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两圆的圆心分别为,P为一个动点,且直线的斜率之积为.

(Ⅰ)求动点P的轨迹M的方程;

(Ⅱ)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C、D,使得?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线

C:(y-2)2-x2=1交于A、B两点.

(1)求|AB|的长;

(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来某企业每年消耗电费约24万元为了节能减排决定安装一个可使用15年的太阳能供电设备接入本企业电网安装这种供电设备的工本费(单位万元)与太阳能电池板的面积(单位平方米)成正比比例系数约为0.5为了保证正常用电安装后采用太阳能和电能互补供电的模式假设在此模式下安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和

(1)试解释的实际意义并建立关于的函数关系式

(2)为多少平方米时取得最小值最小值是多少万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数f(x)-g(x)必有零点;

(2)设函数G(x)=f(x)-g(x)-1

①若函数G(x)有两相异零点且上是减函数,求实数m的取值范围。

②是否存在整数a,b使得的解集恰好为若存在,求出a,b的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但蔬菜上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗蔬菜千克后,蔬菜上残留的农药(单位:微克)的统计表:

(1)在下面的坐标系中,描出散点图,并判断变量是正相关还是负相关;

(2)若用解析式作为蔬菜农药残量与用水量的回归方程,令,计算平均值,完成以下表格(填在答题卡中),求出的回归方程.(保留两位有效数字);

(3)对于某种残留在蔬菜上的农药,当它的残留量低于微克时对人体无害,为了放心食用该蔬菜,请评估需要用多少千克的清水清洗一千克蔬菜?(精确到,参考数据)(附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为:

查看答案和解析>>

同步练习册答案