精英家教网 > 高中数学 > 题目详情

【题目】某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的,是面积为200平方米的十字形地带.计划在正方MNPQ上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.

(1)设总造价是S元,AD长为x米,试建立S关于x的函数关系式;

(2)当x为何值时,S最小?并求出最小值.

【答案】见解析

【解析】(1)设AM=y,则x2+4xy=200.

∴y=.

∴S=4 200x2+210×4×xy+80×4×y2=4 000x2+4×105×+38 000(x>0).

(2)S=4 000x2+4×105×+38 000≥

2+38 000=118 000,

当且仅当x=时等号成立,

即x=米时,S有最小值118 000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017届陕西省西安市铁一中学高三上学期第五次模拟考试数学(文)】已知向量,且函数.

(Ⅰ)当函数f(x)上的最大值为3时,求a的值;

(Ⅱ)在(Ⅰ)的条件下,若对任意的,函数y=f(x)的图像与直线y=-1有且仅有两个不同的交点,试确定b的值.并求函数y=f(x)(0,b]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“开门大吉”是中央电视台推出的娱乐节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌

的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.

(1) 完成下列2×2列联表(见答题纸);

(2)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式: 

(1);

(2)已知,则

(3)函数的图象与函数的图象关于y轴对称;

(4)函数的定义域是R,则m的取值范围是;

(5)函数的递增区间为.

正确的______________________.(把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某学科成绩(满分100分)是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到下图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).

(1)请根据题意,将2×2列联表补充完整;

优秀

非优秀

总计

男生

女生

总计

50

(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?

附: ,其中.

参考数据

≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;

>2.706时,有90%的把握判定变量A,B有关联;

>3.841时,有95%的把握判定变量A,B有关联;

>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:

(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?

(2)假设某人的月收入为元, ,记他应纳税为元,求的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.

(1)证明:a>0;

(2)若z=a+2b,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二个小组有

足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10

张票中任抽1张.

(1)两人都抽到足球票的概率是多少?

(2)两人中至少有一人抽到足球票的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

(2)判断函数的单调性,并用定义证明;

(3)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案