精英家教网 > 高中数学 > 题目详情
(12分)已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点且满足,M,S分别为PB,BC的中点
(1)证明:CM⊥SN;
(2)求SN与平面CMN所成角的大小;
(3)求三棱锥P-ABC外接球的体积V。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(12分)如图,在三棱锥中,平面分别为棱的中点,
(1)求证:
(2)求直线与平面所成角正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列命题:(1)三点确定一个平面;(2)在空间中,过直线外一点只能作一条直线与该直线平行;(3)若平面上有不共线的三点到平面的距离相等,则;(4)若直线满足.其中正确命题的个数是 (      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知三棱锥P=ABC中,PA⊥PC,D为AB的中点,M为PB的中点,且AB=2PD.
(1)求证:DM//面PAC;
(2)找出三棱锥P—ABC中一组面与面垂直的位置关系,并给出证明(只需找到一组即可).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在平行六面体中,的中点,.
(1)化简:;
(2) 设,若,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角B-B1C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图7-4,已知△ABC中, ∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使点A′与点B之间的距离A′B=

(1)求证:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求异面直线A′C与BD所成的角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点,F是BD的中点, (1)求证:BC∥平面AFE   (2)平面ABE⊥平面ACD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.

查看答案和解析>>

同步练习册答案