【题目】在直角坐标系中,圆的参数方程为(为参数),直线的参数方程为(为参数).
(1)若直线与圆相交于,两点,求弦长,若点,求的值;
(2)以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,圆和圆的交点为,,求弦所在直线的直角坐标方程.
科目:高中数学 来源: 题型:
【题目】如图,已知直四棱柱的底面是直角梯形,,,、分别是棱、上的动点,且,,,.
(1)证明:无论点怎样运动,四边形都为矩形;
(2)当时,求几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学理科成绩优异,今年参加了数学,物理,化学,生物4门学科竞赛.已知该同学数学获一等奖的概率为,物理,化学,生物获一等奖的概率都是,且四门学科是否获一等奖相互独立.
(1)求该同学至多有一门学科获得一等奖的概率;
(2)用随机变量表示该同学获得一等奖的总数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台问政直播节目首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 | 一般 | 不满意 | |
A部门 | 50% | 25% | 25% |
B部门 | 80% | 0 | 20% |
C部门 | 50% | 50% | 0 |
D部门 | 40% | 20% | 40% |
(1)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(2)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆(),圆(),若圆的一条切线与椭圆相交于两点.
(1)当, 时,若点都在坐标轴的正半轴上,求椭圆的方程;
(2)若以为直径的圆经过坐标原点,探究是否满足,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点M在椭圆上,以M为圆心的圆与x轴相切于椭圆的右焦点F.
(Ⅰ)若圆M与y轴相切,求椭圆的离心率;
(Ⅱ)若圆M与y轴相交于A,B两点,且是边长为2的正三角形,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列满足:,.的前n项和为.
(Ⅰ)求 及;
(Ⅱ)若 ,(),求数列的前项和.
【答案】(Ⅰ), (Ⅱ)=
【解析】
试题分析:(Ⅰ)设出首项a1和公差d ,利用等差数列通项公式,就可求出,再利用等差数列前项求和公式就可求出;(Ⅱ)由(Ⅰ)知,再利用 ,(),就可求出,再利用错位相减法就可求出.
试题解析:(Ⅰ)设等差数列{an}的首项为a1,公差为d
∵ , ∴ 解得
∴ ,
(Ⅱ)∵ , ∴
∵ ∴
∴
= (1- + - +…+-)
=(1-) =
所以数列的前项和= .
考点:1.等差数列的通项公式; 2. 等差数列的前n项和公式; 3.裂项法求数列的前n项和公式
【题型】解答题
【结束】
18
【题目】在如图所示的几何体中,四边形是等腰梯形, , , 平面, , .
()求证: 平面.
()求二面角的余弦值.
()在线段(含端点)上,是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com