精英家教网 > 高中数学 > 题目详情
(2012•海淀区一模)对于集合M,定义函数fM(x)=
-1,x∈M
1,x∉M
,对于两个集合M,N,定义集合M△N={x|fM(x)•fN(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,16}.
(Ⅰ)写出fA(1)和fB(1)的值,并用列举法写出集合A△B;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数.
(ⅰ)求证:当Card(X△A)+Card(X△B)取得最小值时,2∈X;
(ⅱ)求Card(X△A)+Card(X△B)的最小值.
分析:(Ⅰ)直接利用新定义写出fA(1)和fB(1)的值,并用列举法写出集合A△B;
(Ⅱ)设Card(X△A)+Card(X△B)取得最小值时,X=W,(ⅰ)利用反证法证明2∈X成立;
(ⅱ)同(ⅰ)可得:4∈X且8∈X.通过a∈X且a∉A∪B,以及a∈A∪B且a∉A∩B,Card(X△A)+Card(X△B)取到最小值4.
解答:(Ⅰ)解:fA(1)=1,fB(1)=-1,
对于两个集合M,N,定义集合M△N={x|fM(x)•fN(x)=-1}.
A={2,4,6,8,10},B={1,2,4,8,16}.
∴A△B={1,6,10,16}.…(3分)
(Ⅱ)设当Card(X△A)+Card(X△B)取到最小值时,X=W.
(ⅰ)证明:假设2∉W,令Y=W∪{2}.
那么 Card(Y△A)+Card(Y△B)
=Card(W△A)-1+Card(W△B)-1
<Card(W△A)+Card(W△B).这与题设矛盾.
所以 2∈X,即当Card(X△A)+Card(X△B)取得最小值时,2∈X.…(7分)
(ⅱ)同(ⅰ)可得:4∈X且8∈X.
若存在a∈X且a∉A∪B,则令Z=CU{a}.
那么Card(Z△A)+Card(Z△B)
=Card(X△A)-1+Card(X△B)-1
<Card(X△A)+Card(X△B).
所以 集合W中的元素只能来自A∪B.
若a∈A∪B且a∉A∩B,同上分析可知:集合X中是否包含元素a,Card(X△A)+Card(X△B)的值不变.
综上可知,当W为集合{1,6,10,16}的子集与集合{2,4,8}的并集时,Card(X△A)+Card(X△B)取到最小值4.
点评:本题考查定义域的应用,集合的基本运算,考查逻辑推理能力,分类讨论思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•海淀区一模)执行如图所示的程序框图,输出的k值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方图中x的值;
(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)过双曲线
x2
9
-
y2
16
=1
的右焦点,且平行于经过一、三象限的渐近线的直线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)复数
a+2i1-i
在复平面内所对应的点在虚轴上,那么实数a=
2
2

查看答案和解析>>

同步练习册答案