精英家教网 > 高中数学 > 题目详情
正项等差数列{an}中,已知a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{bn}的前三项.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
1
an•(1+2log2
bn
5
)
,求数列{cn}的前n项和Sn
考点:数列的求和,等差数列的性质
专题:综合题,等差数列与等比数列
分析:(Ⅰ)由已知得a2=5,d>0,(7-d)(18+d)=100,由此能求出bn=5•2n-1,an=2n+1.
(Ⅱ)确定数列{cn}的通项,利用裂项法求前n项和Sn
解答: 解:(Ⅰ)∵正项等差数列{an}中,a1+a2+a3=15,
∴a2=5,d>0,
∵a1+2,a2+5,a3+13构成等比数列{bn}的前三项,
∴{bn}的前3项分别为7-d,10,18+d,
依题意,有(7-d)(18+d)=100,
解得d=2或d=-13(舍),
∴{bn}的首项b1=5,公比q=2,
∴bn=5•2n-1,an=2n+1.
(Ⅱ)cn=
1
an•(1+2log2
bn
5
)
=
1
2
1
2n-1
-
1
2n+1
),
∴Sn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
n
2n+1
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查裂项法,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列三个条件:
①对于任意的x∈R都有f(x+6)=f(x);
②对于任意的0≤x1<x2≤3都有f(x1)<f(x2);
③函数y=f(x+3)的图象关于y轴对称.
则下列结论正确的是(  )
A、f(0.5)>f(13)>f(10)
B、f(10)>f(13)<f(0.5)
C、f(0.5)<f(13)<f(10)
D、f(13)<f(0.5)<f(10)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax+1在(-1,1)上是增函数,函数y=-x2+2ax在[1,2]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=8x的焦点与双曲线
x2
m
-y2=1的右焦点重合,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=a(a>0),前n项和为Sn,且an=
2Sn
n+1

(1)求数列{an}的通项公式an及Sn
(2)记An=a1+a2+a22+…+a2n-1,Bn=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
.求不等式An+a2•Bn<513a成立的最大正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

上海世博会某个展区共有6个展馆,分布在一条直线上,现要在展馆之间安排3名防暴警察,要求相邻的两个展馆之间至多安排一名警察,则不同的安排方法的种数为?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
1
7
,cos(α+β)=-
11
14
,且α∈(0,
π
2
)
α+β∈(
π
2
,π)
,求tan
α
2
及β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过直线x=-2上的动点P作抛物线y2=4x的两条切线PA,PB,其中A,B为切点.
(1)若切线PA,PB的斜率分别为k1,k2,求证:k1k2为定值;
(2)求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线(1+λ)x+(2λ-1)y-3λ+2=0恒过定点
 

查看答案和解析>>

同步练习册答案