精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面积S.

【答案】
(1)解:由正弦定理,则 =

所以 =

即(cosA﹣2cosC)sinB=(2sinC﹣sinA)cosB,化简可得sin(A+B)=2sin(B+C).

因为A+B+C=π,所以sinC=2sinA.

因此 =2.


(2)解:由 =2,得c=2a,由余弦定理b2=a2+c2﹣2accosB,及cosB= ,b=2,

得4=a2+4a2﹣4a2× .解得a=1,从而c=2.

因为cosB= ,且sinB= =

因此S= acsinB= ×1×2× =


【解析】(1)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得sinC=2sinA,即可得解 =2.(2)由正弦定理可求c=2a,由余弦定理解得a=1,从而c=2.利用同角三角函数基本关系式可求sinB的值,进而利用三角形面积公式即可计算得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知函数处的切线方程为

(1)若= ,求证:曲线上的任意一点处的切线与直线和直线

围成的三角形面积为定值;

(2)若,是否存在实数,使得对于定义域内的任意都成立;

(3)在(2)的条件下,若方程有三个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,前n项和Sn与an之间满足an= (n≥2,n∈N*
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正整数k,使(1+S1)(1+S1)…(1+Sn)≥k 对于一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, ,点分别为的中点.

(1)证明: 平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+2x﹣3>0},集合B={x|x2﹣2ax﹣1≤0,a>0}.若A∩B中恰含有一个整数,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+x,对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,则x的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间的最值;

2)求实数的取值范围,使在区间上是单调函数;

3)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4x的焦点为F,点A、B在抛物线上,且∠AFB=90°,弦AB中点M在准线l上的射影为M1 , 则 的最大值为

查看答案和解析>>

同步练习册答案