精英家教网 > 高中数学 > 题目详情

【题目】已知动点轴上方,且到定点距离比到轴的距离大.

1)求动点的轨迹的方程;

2)过点的直线与曲线交于两点,点分别异于原点,在曲线两点处的切线分别为,且交于点,求证:在定直线上.

【答案】1;(2)证明见解析

【解析】

1)设,由到定点距离比到轴的距离大,可得,化简可得点的轨迹的方程;

2)由题意可知,直线的斜率存在且不为,设直线的方程为联立,设,可得的值,又,所以,可得切线的方程,同理可得切线的方程,求出交点坐标,可得其在定直线上.

解:(1)设

则有,化简得

故轨迹的方程为.

2)由题意可知,直线的斜率存在且不为

设直线的方程为

联立得

,所以

所以切线的方程为

同理切线的方程为

联立得.

两式消去

时,

所以交点的轨迹为直线,去掉.

因而交点在定直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是某市21日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表.某人随机选择21日至213日中的某一天到该市出差,第二天返回(往返共两天).

空气质量指数

污染程度

小于100

优良

大于100且小于150

轻度

大于150且小于200

中度

大于200且小于300

重度

1)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论不要求证明)

2)求此人到达当日空气质量优良的概率;

3)求此人出差期间(两天)空气质量至少有一天为中度或重度污染的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为 ( )

A. 198B. 268C. 306D. 378

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是由矩形ADEBRtABC和菱形BFGC组成的一个平面图形,其中AB=1BE=BF=2,∠FBC=60°,将其沿ABBC折起使得BEBF重合,连结DG,如图2.

1)证明:图2中的ACGD四点共面,且平面ABC⊥平面BCGE

2)求图2中的二面角BCGA的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与直线相切,的导函数,且.

1)求

2)函数的图象与曲线关于轴对称,若直线与函数的图象有两个不同的交点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.

(1)求取出的3个小球上的数字互不相同的概率;

(2)求随机变量的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·石家庄一检]已知函数

(1)若,求函数的图像在点处的切线方程;

(2)若函数有两个极值点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案