精英家教网 > 高中数学 > 题目详情

【题目】几何体ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面棱A1B1、B1C1的中点,P是上底面棱AD上的一点,,过P、M、N三点的平面交上底面于PQ, Q在CD上,则PQ等于( )

A. B. C. D.

【答案】B

【解析】

由题设PQ在直角三角形PDQ中,故需要求出PD,QD的长度,用勾股定理在直角三角形PDQ中求PQ的长度.

:∵平面ABCD∥平面A1B1C1D1,MN平面A1B1C1D1
∴MN∥平面ABCD,又PQ=面PMN∩平面ABCD,
∴MN∥PQ.
∵M、N分别是A1B1、B1C1的中点
∴MN∥A1C1∥AC,
∴PQ∥AC,又,ABCD-A1B1C1D1是棱长为a的正方体,
,从而

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+ )(ω>0)的图象与x轴的交点的横坐标构成一个公差为 的等差数列,要得到函数g(x)=Asinωx的图象,只需将f(x)的图象(
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),设函数f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c﹣ a,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分) 已知P32),一直线过点P

若直线在两坐标轴上截距之和为12,求直线的方程;

若直线xy轴正半轴交于AB两点,当面积为12时求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示圆锥的轴截面为等腰直角△SABQ为底面圆周上一点.

(1)QB的中点为COHSC求证OH⊥平面SBQ

(2)如果∠AOQ=60°,QB=2求此圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1n(x﹣1)﹣k(x﹣1)+1
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明: 且n>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥的侧面是等腰直角三角形,,且

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥ABCD的棱长都相等,E是AB的中点,则异面直线CE与BD所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案