【题目】在区间上任取一个数记为a,在区间上任取一个数记为b.
若a,,求直线的斜率为的概率;
若a,,求直线的斜率为的概率.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与平面ABCD所成角的正切值依次是1、,AP=2,E、F依次是PB、PC的中点.
(1)求证:PB⊥平面AEFD;
(2)求直线EC与平面PAD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某渔业公司年初用81万元购买一艘捕鱼船,第一年各种费用为1万元,以后每年都增加2万元,每年捕鱼收益30万元.
问第几年开始获利?
若干年后,有两种处理方案:方案一:年平均获利最大时,以46万元出售该渔船;
方案二:总纯收入获利最大时,以10万元出售该渔船问:哪一种方案合算?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在凸四边形ABCD中,AB=1,BC= ,AC⊥DC,CD= AC.设∠ABC=θ.
(1)若θ=30°,求AD的长;
(2)当θ变化时,求BD的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)在定义域[2﹣a,3]上是偶函数,在[0,3]上单调递增,并且f(﹣m2﹣ )>f(﹣m2+2m﹣2),则m的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,,,平面ABC.
若,求直线与平面所成的角的大小;
在的条件下,求二面角的大小;
若,平面,G为垂足,令其中p、q、,求p、q、r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C的对边分别为a、b、c,a=btanA,且B为钝角.
(1)证明:B﹣A= ;
(2)求sinA+sinC的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为定义域上的奇函数,且在上是单调递增函数,函数,数列为等差数列,,且公差不为0,若,则( )
A. 45 B. 15 C. 10 D. 0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com