分析 设出双曲线的右焦点,一条渐近线,以及右顶点,求出FP的最小值,即有3a不大于c-a,再由离心率公式计算即可得到.
解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点F(c,0),
一条渐近线方程为y=$\frac{b}{a}$x,
右顶点为P′(a,0),
由|FP|≥|FP′|=c-a,
当P与P′重合,Q与O重合,则有|OP′|=a,
则3a≥c-a,即为c≤4a,
即有e=$\frac{c}{a}$≤4,
由于e>1,则1<e≤4.
故答案为:(1,4].
点评 本题考查双曲线的方程和性质,考查双曲线的点到焦点的距离的最小值,考查离心率的求法,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | (-4,-2] | B. | [-4,-2] | C. | (-4,+∞) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在$[\frac{π}{6},\frac{2π}{3}]$上是增函数 | |
B. | 图象关于直线$x=\frac{5π}{12}$对称 | |
C. | 图象关于点$(-\frac{π}{3},0)$对称 | |
D. | 把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,所得函数图象关于y轴对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | cos2α>0 | B. | tan2α>0 | C. | $cos\frac{α}{2}>0$ | D. | $tan\frac{α}{2}>0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com