精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱中,底面是矩形,交于点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

【答案】(1)见解析.(2) .

【解析】

(1)根据线面垂直的判定定理,先证明平面,得到,进而可证明结论成立;

2)以为坐标原点建立空间直角坐标系,求出直线的方向向量、平面的一个法向量,求两向量夹角的余弦值,即可得出结果.

(1)证明:因为四棱柱是直四棱柱,所以平面,则 .

所以平面,所以.

因为,所以是正方形,所以.

,所以平面.

(2)因为四棱柱是直四棱柱,底面是矩形,所以以为坐标原点建立如图所示的空间直角坐标系,则,

, ,

设平面的法向量为

,可得

,则

设直线与平面所成的角为

.

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形均为正方形,点M的中点,点H在线段上,且与平面所成角的正弦值为.

1)求证:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

,求函数的极值;

若关于的不等式上恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长均相等的正四棱锥中, 为底面正方形的重心, 分别为侧棱的中点,有下列结论:

平面;②平面平面;③

④直线与直线所成角的大小为.

其中正确结论的序号是__________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某商场随机抽取了2000件商品,按商品价格(元)进行统计,所得频率分布直方图如图所示.记价格在对应的小矩形的面积分别为,且.

1)按分层抽样从价格在的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;

2)在清明节期间,该商场制定了两种不同的促销方案:

方案一:全场商品打八折;

方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)

商品价格

优惠(元)

30

50

140

160

280

320

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)g(x)分别是定义在R上的奇函数和偶函数,当x0时,f′(x)·g(x)f(x)·g′(x)0,且f(3)·g(3)0,则不等式f(x)·g(x)0的解集是( )

A. (3,0)∪(3,+∞)

B. (3,0)∪ (0,3)

C. (,-3)∪(3,+∞)

D. (,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,短轴长为,离心率为

求椭圆C的方程;

若过点的直线与椭圆C交于AB两点,且P点平分线段AB,求直线AB的方程;

一条动直线l与椭圆C交于不同两点MNO为坐标原点,的面积为求证:为定值.

查看答案和解析>>

同步练习册答案