【题目】已知点、为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.
(1)求双曲线的两条渐近线的夹角;
(2)过点的直线和双曲线的右支交于、两点,求的面积的最小值;
(3)过双曲线上任意一点分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于、两点,求平行四边形的面积.
【答案】(1)(2)(3)
【解析】
(1)首先根据双曲线的定义,结合题中所给的角的大小,求得,从而求得b的值,进而得到双曲线的渐近线方程,利用直线的方向向量所成的角,求得两条渐近线的夹角余弦值,利用反余弦求出结果;
(2)设出直线的方程,与双曲线的方程联立,利用三角形的面积公式,结合函数的单调性,求得最值,得到结果;
(3)根据所学的知识将四边形的面积表示出来,进而求得结果.
(1)由题意,得,
,
∴,∴双曲线的方程为,
∴,∴;
(2)【注:若设点斜式,需补上斜率不存在的情况】
设,、,
将直线的方程代入双曲线方程,消去,得,
则,得,
,
令,,则,
其中在上单调递减,
∴在上单调递增,
∴当时,取得最小值,此时,的方程为;
(3)设,其中
方法一:设,与联立,
可求出,
由三阶行列式表示的三角形面积公式
可得
.
方法二:如图,,
设到和的距离为、,
则,,
∴
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,两焦点分别为,右顶点为, .
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过定点的直线与双曲线的左支有两个交点,与椭圆交于两点,与圆交于两点,若的面积为, ,求正数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为25-x万元(国家规定大货车的报废年限为10年).
(1)大货车运输到第几年年底,该车运输累计收入超过总支出?
(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,斜率为1的直线l交椭圆于A、B两点,且线段AB的中点坐标为.
求椭圆的方程;
若P是椭圆与双曲线在第一象限的交点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.
(1)要使矩形的面积大于平方米,则的长应在什么范围内?
(2)当的长度是多少时,矩形花坛的面积最小?并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:,,.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com