精英家教网 > 高中数学 > 题目详情

已知圆,圆关于直线对称,圆心在第二象限,半径为

(Ⅰ)求圆的方程;

(Ⅱ)已知不过原点的直线与圆相切,且在轴、轴上的截距相等,求直线的方程。

解:(Ⅰ)由知圆心C的坐标为 

∵圆C关于直线对称      ∴点在直线上   

----①    且--②  

又∵圆心C在第二象限   ∴   由①②解得    

∴所求圆C的方程为: 

(Ⅱ)切线在两坐标轴上的截距相等且不为零,设:  

圆C:    圆心到切线的距离等于半径,

      

所求切线方程

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆
x2
a2
+
y2
b2
=1
写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知直线l:8x+6y+1=0,圆C1:x2+y2+8x-2y+13=0,圆C2:x2+y2+8tx-8y+16t+12=0.
(1)当t=-1时,试判断圆C1与圆C2的位置关系,并说明理由;
(2)若圆C1与圆C2关于直线l对称,求t的值;
(3)在(2)的条件下,若P(a,b)为平面上的点,是否存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1与圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在,求点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(1,
178
)且它的一个方向向量为(4,-7),又圆C1:(x+3)2+(y-1)2=4与圆C2关于直线l对称.
(Ⅰ)求直线l和圆C2的方程;
(Ⅱ)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试示所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
x=t-3 
y=
3
(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:设计必修二数学苏教版 苏教版 题型:044

已知点A(0,2)和圆C:(x-6)2+(y-4)2,一条光线从A点出发射到x轴上后沿圆的切线方向反射,求这条光线从A点到切点所经过的路程.

思路分析:先画出示意图,再利用对称性求解问题.类似这种关于光的反射问题,通常都利用对称性作出题中图形对“镜面”的对称图形,从而化折线问题为直线问题.

查看答案和解析>>

同步练习册答案