精英家教网 > 高中数学 > 题目详情
11.若幂函数f(x)满足f(8)=$\frac{1}{4}$,则函数f(x)的单调递增区间是(-∞,0).

分析 设幂函数f(x)=xα(α为常数).可得8α=$\frac{1}{4}$,解出α即可得出.

解答 解:设幂函数f(x)=xα(α为常数).
∵f(8)=$\frac{1}{4}$,
∴8α=$\frac{1}{4}$,
解得α=$-\frac{2}{3}$.
∴f(x)=${x}^{-\frac{2}{3}}$.
∴函数f(x)的单调递增区间是(-∞,0).
故答案为:(-∞,0).

点评 本题考查了幂函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.经过两点M(-2,m),N(1,4)的直线MN的倾斜角等于45°,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.判断方程ex+4x-4=0在区间[0,1]内实数解的存在性,若存在.有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求双曲线9y2-4x2=-36的实轴长、虚轴长、焦点坐标、离心率和渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)是定义域为R上的偶函数,且在区间[0,+∞)上是单调递增函数,若实数a满足不等式f(log2a)+f(${log_{\frac{1}{2}}}a$)≤2f(2),则实数a的取值范围是$[{\frac{1}{4},4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆C:(x+1)2+y2=25,定点A(1,0),M为圆上的一个动点,连接MA,作MA的垂直平分线交半径MC于P,当M点在圆周上运动时,点P的轨迹方程为$\frac{{x}^{2}}{\frac{25}{4}}+\frac{{y}^{2}}{\frac{21}{4}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=lg(1-x2),x∈(-1,1)的值域为(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+1)x2+ax+a(其中a>0).
(I)若函数f(x)的导函数f′(x)有最小值为0,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若函数f(x)恰有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F设BE=x,记f(x)=$\overrightarrow{EC}$•$\overrightarrow{CF}$,则函数f(x)的值域是(0,4],当△ECF面积最大时,|$\overrightarrow{EF}$|=2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案