精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为 为参数),曲线的极坐标方程为.

(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;

(2)若直线经过点,求直线被曲线截得的线段的长.

【答案】(1) 曲线表示的是焦点为,准线为的抛物线;(2)8.

【解析】试题分析:(1)将曲线的极坐标方程为两边同时乘以,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;2由直线经过点,可得的值,再将直线的参数方程代入曲线的标准方程,由直线参数方程的几何意义可得直线被曲线截得的线段的长.

试题解析:(1)由可得,即

曲线表示的是焦点为,准线为的抛物线.

(2)将代入,得

,∴直线的参数方程为 (为参数).

将直线的参数方程代入

由直线参数方程的几何意义可知,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线在第一象限的交点为,椭圆的左、右焦点分别为,其中也是抛物线的焦点,且.

1)求椭圆的方程;

2)过的直线(不与轴重合)交椭圆两点,点为椭圆的左顶点,直线分别交直线于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界互联网大会是由中国倡导并每年在浙江省嘉兴市桐乡乌镇举办的世界性互联网盛会,大会旨在搭建中国与世界互联互通的国际平台和国际互联网共享共治的中国平台,让各国在争议中求共识在共识中谋合作在合作中创共赢.20191020日至22日,第六届世界互联网大会如期举行,为了大会顺利召开,组委会特招募了1 000名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄,得到了他们年龄的中位数为34岁,年龄在岁内的人数为15,并根据调查结果画出如图所示的频率分布直方图:

1)求的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);

2)这次大会志愿者主要通过现场报名和登录大会官网报名,即现场和网络两种方式报名调查.100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能

否在犯错误的概率不超过0.001的前提下,认为选择哪种报名方式与性别有关系”?

男性

女性

总计

现场报名

50

网络报名

31

总计

50

参考公式及数据:,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障某治疗新冠肺炎药品的主要药理成分在国家药品监督管理局规定的值范围内,武汉某制药厂在该药品的生产过程中,检验员在一天中按照规定从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:mg.根据生产经验,可以认为这条药品生产线正常状态下生产的产品的主要药理成分含量服从正态分布Nμσ2.在一天内抽取的20件产品中,如果有一件出现了主要药理成分含量在(μ3σμ+3σ)之外的药品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对本次的生产过程进行检查.

1)下面是检验员在224日抽取的20件药品的主要药理成分含量:

10.02

9.78

10.04

9.92

10.14

10.04

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

9.95

10.05

10.05

9.96

10.12

经计算得xi9.96s0.19;其中xi为抽取的第i件药品的主要药理成分含量,i1220.用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对本次的生产过程进行检查?

2)假设生产状态正常,记X表示某天抽取的20件产品中其主要药理成分含量在(μ3σμ+3σ)之外的药品件数,求PX1)及/span>X的数学期望.

附:若随机变量Z服从正态分布Nμσ2),则Pμ3σZμ+3σ≈0.99740.997419≈0.95.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图象在处的切线与直线平行.

(1)求函数的极值;

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数处的切线方程为,求 的值;

(Ⅱ)若 求函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

1)当时,求内的极值;

2)设函数,当有两个极值点时,总有,求实数的值.

查看答案和解析>>

同步练习册答案