精英家教网 > 高中数学 > 题目详情
8.已知两圆的方程分别为x2+y2+6x-4=0和x2+y2+6y-28=0且交于A,B两点
(1)求AB所在的直线方程
(2)求两圆公共弦AB的长.

分析 (1)把两圆的方程相减,化简可得两个圆的公共弦所在的直线方程;
(2)求出圆心到直线x-y+4=0的距离,即可求两圆公共弦AB的长.

解答 解:(1)把两圆x2+y2+6x-4=0和x2+y2+6y-28=0方程相减,可得6x-6y-24=0,即 x-y+4=0.
由于此直线方程既满足第一个圆的方程,又满足第二个圆的方程,故是两个圆的公共弦所在的直线方程,即x-y+4=0;
(2)x2+y2+6x-4=0的圆心坐标为(-3,0),半径为$\sqrt{13}$,∴圆心到直线x-y+4=0的距离d=$\frac{1}{\sqrt{2}}$,
∴两圆公共弦AB的长=2$\sqrt{13-\frac{1}{2}}$=5$\sqrt{2}$.

点评 本题主要考查直线和圆的位置关系,求两个圆的公共弦所在的直线方程的方法,考查弦长的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C1的极坐标方程为ρ=4sinθ,曲线C2的参数方程为$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,0≤α<π),射线$θ=φ,θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$与曲线C1交于(不包括极点O)三点A,B,C.
(1)求证:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)当$φ=\frac{5π}{12}$时,B,C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2-4bx+2.
(Ⅰ)任取a∈{1,2,3},b∈{-1,1,2,3,4},记“f(x)在区间[1,+∞)上是增函数”为事件A,求A发生的概率;
(Ⅱ)任取(a,b)∈{(a,b)|a+4b-6≤0,a>0,b>0},记“关于x的方程f(x)=0有一个大于1的根和一个小于1的根”为事件B,求B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出的b值等于(  )
A.-24B.-15C.-8D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求抛物线y2=2x与直线2x+y-2=0围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a∈R,函数$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+2ax({x∈R})$.
(1)当a=1时,求函数f(x)的单调递增区间;
(2)若函数f(x)在R上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列语句中,不能成为命题的是(  )
A.6>10B.x>2C.若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=0D.0∈N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx.
(1)若lnx-f(x)≤-1对x∈(0,+∞)恒成立,求实数a的取值范围;
(2)对任意n∈N+,证明n+1<e$\root{n}{n!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.执行如图的程序框图,则输出的n为13.

查看答案和解析>>

同步练习册答案