£¨2010•ÖØÇìһģ£©¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚÒ»¸ö³£ÊýM£¬Ê¹µÃ¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐ|an|¡ÜM£¬Ôò³Æ{an}ΪÓнçÊýÁУ®
£¨¢ñ£©ÅжÏan=2+sinnÊÇ·ñΪÓнçÊýÁв¢ËµÃ÷ÀíÓÉ£®
£¨¢ò£©ÊÇ·ñ´æÔÚÕýÏîµÈ±ÈÊýÁÐ{an}£¬Ê¹µÃ{an}µÄÇ°nÏîºÍSn¹¹³ÉµÄÊýÁÐ{Sn}ÊÇÓнçÊýÁУ¿Èô´æÔÚ£¬ÇóÊýÁÐ{an}µÄ¹«±ÈqµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ó£©ÅжÏÊýÁÐan=
1
3
+
1
5
+
1
7
+¡­+
1
2n-1
(n¡Ý2)
ÊÇ·ñΪÓнçÊýÁУ¬²¢Ö¤Ã÷£®
·ÖÎö£º£¨¢ñ£©Çóan=2+sinnµÄÖµÓòΪ1¡Üan=2+sinn¡Ü3£¬¸ù¾ÝÓнçÊýÁеĶ¨Òå¿ÉÒÔÅжϣ»
£¨¢ò£©¶Ô¹«±Èq½øÐÐÌÖÂÛ£¬µ±0£¼q£¼1ʱ£¬Sn=
a1(1-qn)
1-q
£¼
a1
1-q
£¬Ò×ÖªÕýÊýÊýÁÐ{Sn}Âú×ã|Sn|£¼
a1
1-q
£¬¼´ÎªÓнçÊýÁУ»µ±q=1ʱ£¬Sn=na1¡ú+¡Þ£¬¹ÊΪÎÞ½çÊýÁУ»µ±q£¾1ʱ£¬Sn=a1+a2+¡­+an£¾na1¡ú+¡Þ£¬´ËʱΪÎÞ½çÊýÁУ¬´Ó¶øµÃ½áÂÛ£®
£¨¢ó£©{an}ΪÎÞ½çÊýÁУ¬ÀûÓ÷ÅËõ·¨£¬×ª»»ÎªÀûÓõȱÈÊýÁÐÇóºÍ¿ÉÖ¤£®
½â´ð£º½â£º£¨¢ñ£©1¡Üan=2+sinn¡Ü3£¬
¹Ê{an}ΪÓнçÊýÁС­£¨2·Ö£©
£¨¢ò£©É蹫±ÈΪq£¬µ±0£¼q£¼1ʱ£¬Sn=
a1(1-qn)
1-q
£¼
a1
1-q
£¬
ÔòÕýÊýÊýÁÐ{Sn}Âú×ã|Sn|£¼
a1
1-q
£¬¼´ÎªÓнçÊýÁУ»
µ±q=1ʱ£¬Sn=na1¡ú+¡Þ£¬¹ÊΪÎÞ½çÊýÁУ»
µ±q£¾1ʱ£¬Sn=a1+a2+¡­+an£¾na1¡ú+¡Þ£¬´ËʱΪÎÞ½çÊýÁУ®
×ÛÉÏ£ºµ±ÇÒ½öµ±0£¼q£¼1ʱ£¬{Sn}ΪÓнçÊýÁС­£¨6·Ö£©£®
£¨¢ó£©{an}ΪÎÞ½çÊýÁУ¬ÊÂʵÉÏan=
1
3
+
1
5
+
1
7
+¡­+
1
2n-1
£¾
1
4
+
1
6
+
1
8
+¡­+
1
2n

¡à2an£¾
1
3
+
1
4
+
1
5
+
1
6
+¡­+
1
2n-1
+
1
2n

¡à2a2n£¾
1
3
+
1
4
+
1
5
+
1
6
+¡­+
1
2•2n
=(
1
3
+
1
4
)+(
1
5
+
1
6
+
1
7
+
1
8
)+(
1
9
+¡­+
1
16
)+¡­+(
1
2n+1
+
1
2n+2
+¡­+
1
2n+2n
)
£¾
1
4
¡Á2+
1
8
¡Á4+
1
16
¡Á8+¡­+
1
2n¡Á2
¡Á2n=
n
2

¡àa2n£¾
n
4

¹Êµ±nÎÞÏÞÔö´óʱanÒ²ÎÞÏÞÔö´ó£¬
ËùÒÔ{an}Î޽硭£¨12·Ö£©£®
µãÆÀ£º±¾ÌâÒÔÊýÁÐΪÔØÌ壬¿¼²éж¨Ò壬¹Ø¼üÊÇÀí½âж¨Ò壬¶ÔµÈ±ÈÊýÁÐӦעÒâÇóºÍ¹«Ê½µÄʹÓÃÌõ¼þ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÖØÇìһģ£©ÒÑÖªx£¬y¡ÊR£¬Ôò¡°x•y=0¡±ÊÇ¡°x=0¡±µÄ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÖØÇìһģ£©Å×ÎïÏßy=2x2µÄ½»µã×ø±êÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÖØÇìһģ£©ÒÑÖªÖ±Ïßl1µÄ·½³ÌΪ3x+4y-7=0£¬Ö±Ïßl2µÄ·½³ÌΪ6x+8y+1=0£¬ÔòÖ±Ïßl1Óël2µÄ¾àÀëΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÖØÇìһģ£©É輯ºÏA={£¨x£¬y£©|x2+y2¡Ü1}£¬¼¯ºÏB={£¨x£¬y£©|log|x||y|¡Ülog|y||x|£¬|x|£¼1£¬|y|£¼1}£¬ÔòÔÚÖ±½Ç×ø±êƽÃæÄÚ£¬A¡ÉBËù±íʾµÄƽÃæÇøÓòµÄÃæ»ýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÖØÇìһģ£©É躯Êýf(x)=-x2+2ax+m£¬g(x)=
ax
£®
£¨I£©Èôº¯Êýf£¨x£©£¬g£¨x£©ÔÚ[1£¬2]É϶¼ÊǼõº¯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨II£©µ±a=1ʱ£¬É躯Êýh£¨x£©=f£¨x£©g£¨x£©£¬Èôh£¨x£©ÔÚ£¨0£¬+¡Þ£©ÄÚµÄ×î´óֵΪ-4£¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸