精英家教网 > 高中数学 > 题目详情
已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。
(1)(2)

试题分析:(1)∵                      2分
原点到直线AB的距离,  4分
 故所求双曲线方程为           6分
(2)把中消去y,整理得 .                  8分
,则 
因为以CD为直径的圆经过双曲线的左焦点F,所以 ,    10分
可得    把代入,
解得:                      11分
,得满足    12分
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

直线与抛物线所围成的图形面积是(     )
A.20B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

焦点在轴上,渐近线方程为的双曲线的离心率为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线Cy=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要实现不被曲线C挡住,则实数a的取值范围是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若直线过双曲线的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点轴不平行的直线与双曲线相交于不同的两点的垂直平分线为,求直线轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆mx2 + ny2 = 1与直线x+y-1=0交于A、B两点,过原点与线段AB中点的直线的斜率为,则=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线左焦点的直线与以右焦点为圆心、为半径的圆相切于A点,且,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆具有性质:若是椭圆为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
试对双曲线为常数写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线(a>0,b>0)的离心率是,则的最小值为  (    )
A.B.1C.2D.

查看答案和解析>>

同步练习册答案