精英家教网 > 高中数学 > 题目详情
设a∈R,若函数y=ex+ax,x∈R,有大于-1的极值点,则实数a的取值范围.
考点:利用导数研究函数的极值
专题:计算题,导数的综合应用
分析:求导y=ex-a,从而可得a=ex在(-1,+∞)有解,从而求实数a的取值范围.
解答: 解:∵y=ex+ax,∴y=ex-a;
令y=ex-a=0得,a=ex
∵函数y=ex+ax,x∈R,有大于-1的极值点,
∴a=ex在(-1,+∞)有解;
故a>
1
e

故实数a的取值范围为(
1
e
,+∞).
点评:本题考查了导数的综合应用及极值的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(x-1)ex-kx2(k∈R),g(x)=alnx(a∈R).
(1)当a=1时,求y=xg(x)的单调增区间;
(2)若对?x∈[1,e],都有g(x)≥-x2+(a+2)x成立,求a的取值范围.
(3)当k∈(
3
4
,1]时,求f(x)在[0,k]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司组织结构如表,其中销售部的直接领导是(  )
A、副总经理(甲)
B、副总经理(乙)
C、总经理
D、董事会

查看答案和解析>>

科目:高中数学 来源: 题型:

地如图为铺有1至36号地板砖的地面,现将一粒豆子随机地扔到地板上,求豆子落在能被2或3整除的地板砖上的概率
123456
789101112
131415161718
192021222324
252627282930
313233343536

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图(单位:cm)如图所示,则此几何体的侧视图面积为
 
cm2,此几何体的体积为
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中主视图中△ABC是边长为2的正三角形,俯视图为正六边形,求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(Ⅰ)设(i,j)表示甲乙抽到的牌的数字,(如甲抽到红桃2,乙抽到红桃3,记为(2,3))写出甲乙二人抽到的牌的所有情况;
(Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?
(Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若|
a
|=1,|
b
|=
2
,(
a
-
b
)•
a
=0,则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3=ax2-4x+3(x∈R).
(1)当a=2时求f(x)在点(1,f(1))处的切线方程
(2)若函数f(x)在区间(1,2)上为减函数,求实数a的取值范围..

查看答案和解析>>

同步练习册答案