精英家教网 > 高中数学 > 题目详情
4.已知直线y=kx(k∈R)与函数f(x)=$\left\{\begin{array}{l}{3-(\frac{1}{4})^{x}(x≤0)}\\{\frac{1}{2}{x}^{2}+2(x>0)}\end{array}\right.$的图象恰有三个不同的公共点,则实数k的取值范围是(  )
A.($\frac{3}{2}$,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,-2)D.(2,+∞)

分析 当x>0时,如图:设切点为(a,f(a)),求出切线的斜率即可求出实数k的最大值.

解答 解:当x>0时,如图:设切点为(a,f(a)).
∵f′(x)=x,
∴$\frac{\frac{1}{2}{a}^{2}+2}{a}$=a,
解得a=2,
∴k=f′(2)=2,
当k>2时,且x>0,y=kx与y=$\frac{1}{2}$x2+2有两个交点,
当x<0时,y=kx,与y=3-($\frac{1}{4}$)总有一个交点,
∴k>2,
故选:D

点评 本题考查抽象函数及其应用,着重考查函数的零点与方程根的关系,考查转化思想与作图能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.“x>1”是“x2>x”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若变量x,y满足$\left\{\begin{array}{l}{x+y≤-1}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则x2+y2的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,$\frac{3}{2}$)在该椭圆上
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,若△AF2B的面积为$\frac{12\sqrt{2}}{7}$,求以F2为圆心且与直线l相切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=|x2-2x-3|,则f(x)在(-1,+∞)上的减区间为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将圆x2+y2=1上每一点的横坐标变为原来的2倍,纵坐标不变,得到曲线C.
(1)求曲线C的参数方程;
(2)求曲线C上的点P(x,y),使得$z=x-2\sqrt{3}y$取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,${a}_{n}={(-1)}^{n}(2n-1)$,n∈N*
(Ⅰ)求S1,S2,S3
(Ⅱ)由(Ⅰ)推测Sn的公式,并用数学归纳法证明你的推测.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知不等式$(x+y)(\frac{1}{x}+\frac{a}{y})≥25$对任意正实数x,y恒成立,则正实数a的最小值为(  )
A.$\frac{625}{16}$B.16C.$\frac{25}{16}$D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}x=5cosα\\ y=sinα\end{array}\right.$(α为参数),点P的坐标为$(3\sqrt{2},0)$.
(1)试判断曲线C的形状为何种圆锥曲线;
(2)已知直线l过点P且与曲线C交于A,B两点,若直线l的倾斜角为45°,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案