精英家教网 > 高中数学 > 题目详情

若f(x)=x2-x+a,f(-m)<0,则f(m+1)的值为


  1. A.
    正数
  2. B.
    负数
  3. C.
    非负数
  4. D.
    与m有关
B
分析:根据f(-m)小于0,把-m代入f(x)的解析式中得到关于m的二次三项式小于0,然后再把x=m+1代入f(x)的解析式中,利用完全平方公式化简,合并后利用刚才得到的式子小于0即可判断f(m+1)也小于0.
解答:∵f(-m)<0,
∴m2+m+a<0,
∴f(m+1)=(m+1)2-(m+1)+a=m2+m+a<0.
故选B.
点评:此题考查学生掌握二次函数的性质,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>
12
,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数.现给出下列函数:
①f(x)=2x;
②f(x)=x2+1;
f(x)=
2
(sinx+cosx)

f(x)=
x
x2-x+1

⑤f(x)是定义在实数集R上的奇函数,且对一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的函数有
①④⑤
①④⑤

查看答案和解析>>

科目:高中数学 来源:郑州二模 题型:解答题

已知x>
1
2
,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年高考数学压轴大题训练:函数与不等式的恒成立问题(解析版) 题型:解答题

已知x>,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年河南省郑州市高考数学二模试卷(理科)(解析版) 题型:解答题

已知x>,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

同步练习册答案